Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Show that [tex]\( v = \log \left(x^2 + y^2\right) \)[/tex] is harmonic. Find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic.

Sagot :

To demonstrate that the function [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic and to find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic, we'll go through the following steps:

1. Compute the first-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_x = \frac{\partial v}{\partial x} = \frac{2x}{x^2 + y^2} \][/tex]
[tex]\[ v_y = \frac{\partial v}{\partial y} = \frac{2y}{x^2 + y^2} \][/tex]

2. Compute the second-order partial derivatives of [tex]\( v \)[/tex]:
[tex]\[ v_{xx} = \frac{\partial^2 v}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2x \cdot 2x}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4x^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4x^2}{(x^2 + y^2)^2} = \frac{-2x^2 + 2y^2}{(x^2 + y^2)^2} \][/tex]

Thus:
[tex]\[ v_{xx} = -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]

Now, compute [tex]\( v_{yy} \)[/tex]:
[tex]\[ v_{yy} = \frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) \][/tex]
[tex]\[ \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{(x^2 + y^2) \cdot 2 - 2y \cdot 2y}{(x^2 + y^2)^2} = \frac{2(x^2 + y^2) - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 + 2y^2 - 4y^2}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2} \][/tex]

Thus:
[tex]\[ v_{yy} = -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \][/tex]

3. Check if [tex]\( v \)[/tex] is harmonic by summing the second partial derivatives:
[tex]\[ v_{xx} + v_{yy} = \left( -\frac{4x^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) + \left( -\frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} \right) \][/tex]
[tex]\[ v_{xx} + v_{yy} = -\frac{4x^2}{(x^2 + y^2)^2} - \frac{4y^2}{(x^2 + y^2)^2} + \frac{2}{x^2 + y^2} + \frac{2}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4(x^2 + y^2)}{(x^2 + y^2)^2} + \frac{4}{x^2 + y^2} \][/tex]
[tex]\[ = -\frac{4}{x^2 + y^2} + \frac{4}{x^2 + y^2} = 0 \][/tex]

Since [tex]\( v_{xx} + v_{yy} = 0 \)[/tex], the function [tex]\( v \)[/tex] is indeed harmonic.

4. Find a function [tex]\( u \)[/tex] such that [tex]\( u + iv \)[/tex] is analytic.

According to the Cauchy-Riemann equations:
[tex]\[ u_x = -v_y \quad \text{and} \quad u_y = v_x \][/tex]

Given:
[tex]\[ v_y = \frac{2y}{x^2 + y^2} \Rightarrow u_x = -\frac{2y}{x^2 + y^2} \][/tex]
[tex]\[ v_x = \frac{2x}{x^2 + y^2} \Rightarrow u_y = \frac{2x}{x^2 + y^2} \][/tex]

Therefore, the function [tex]\( v = \log(x^2 + y^2) \)[/tex] is harmonic, and the function [tex]\( u \)[/tex] obtained by using the Cauchy-Riemann equations satisfies the conditions for [tex]\( u + iv \)[/tex] to be analytic.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.