Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the rate of change from the given table, we need to calculate the slope, which represents how much the snowfall amount changes per hour. The table provided lists the snowfall amounts for different lengths of snowfall time.
Here's the step-by-step process to find the rate of change:
1. Identify the pairs of corresponding values for length of snowfall (in hours) and amount of snow on the ground (in inches).
2. Use the slope formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex], where [tex]\( \Delta y \)[/tex] is the change in the snowfall amount and [tex]\( \Delta x \)[/tex] is the change in the length of snowfall.
Let's calculate the rate of change between each successive pair:
- Between 0 and 0.5 hours:
[tex]\[ \text{Slope} = \frac{4.5 - 3.3}{0.5 - 0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 0.5 and 1.0 hours:
[tex]\[ \text{Slope} = \frac{5.7 - 4.5}{1.0 - 0.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.0 and 1.5 hours:
[tex]\[ \text{Slope} = \frac{6.9 - 5.7}{1.5 - 1.0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.5 and 2.0 hours:
[tex]\[ \text{Slope} = \frac{8.1 - 6.9}{2.0 - 1.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
As we can see, the rate of change (slope) is the same for all pairs—it is [tex]\( 2.4 \)[/tex] inches per hour.
Thus, the rate of change for the snowfall amount is:
[tex]\[ \boxed{2.4} \][/tex] inches per hour.
Here's the step-by-step process to find the rate of change:
1. Identify the pairs of corresponding values for length of snowfall (in hours) and amount of snow on the ground (in inches).
2. Use the slope formula [tex]\( \text{slope} = \frac{\Delta y}{\Delta x} \)[/tex], where [tex]\( \Delta y \)[/tex] is the change in the snowfall amount and [tex]\( \Delta x \)[/tex] is the change in the length of snowfall.
Let's calculate the rate of change between each successive pair:
- Between 0 and 0.5 hours:
[tex]\[ \text{Slope} = \frac{4.5 - 3.3}{0.5 - 0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 0.5 and 1.0 hours:
[tex]\[ \text{Slope} = \frac{5.7 - 4.5}{1.0 - 0.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.0 and 1.5 hours:
[tex]\[ \text{Slope} = \frac{6.9 - 5.7}{1.5 - 1.0} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
- Between 1.5 and 2.0 hours:
[tex]\[ \text{Slope} = \frac{8.1 - 6.9}{2.0 - 1.5} = \frac{1.2}{0.5} = 2.4 \text{ inches per hour} \][/tex]
As we can see, the rate of change (slope) is the same for all pairs—it is [tex]\( 2.4 \)[/tex] inches per hour.
Thus, the rate of change for the snowfall amount is:
[tex]\[ \boxed{2.4} \][/tex] inches per hour.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.