Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given equation [tex]\( x^2 + 2x = 15 \)[/tex] and determine the type of reasoning used, let's go through the steps and logic:
1. Rewrite the Equation:
Start with the given equation and move all terms to one side to get a standard quadratic form:
[tex]\[ x^2 + 2x - 15 = 0 \][/tex]
2. Identify the Coefficients:
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a = 1, \quad b = 2, \quad c = -15 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64 \][/tex]
4. Solve for the Roots:
The quadratic formula to find the roots [tex]\( x \)[/tex] of the equation is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Plugging in the values:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} = \frac{-2 \pm 8}{2} \][/tex]
Calculate the two solutions:
[tex]\[ x_1 = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x_2 = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
5. Check if [tex]\( x = 3 \)[/tex] is Indeed a Solution:
One of the solutions we found is [tex]\( x = 3 \)[/tex]. Thus, the statement [tex]\( x = 3 \)[/tex] is correct.
6. Determine the Type of Reasoning:
- Deductive Reasoning: This involves starting with a general statement and deriving a specific conclusion that logically follows from the general premises.
- In this problem, once we solve the equation exactly and find [tex]\( x = 3 \)[/tex], our conclusion follows directly and necessarily from the given premises without any assumptions or probabilities.
Given that the solution [tex]\( x = 3 \)[/tex] follows logically and necessarily from solving the quadratic equation, we conclude that the reasoning used is Deductive, valid.
1. Rewrite the Equation:
Start with the given equation and move all terms to one side to get a standard quadratic form:
[tex]\[ x^2 + 2x - 15 = 0 \][/tex]
2. Identify the Coefficients:
In the quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ a = 1, \quad b = 2, \quad c = -15 \][/tex]
3. Calculate the Discriminant:
The discriminant ([tex]\( \Delta \)[/tex]) of a quadratic equation is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = 2^2 - 4 \cdot 1 \cdot (-15) = 4 + 60 = 64 \][/tex]
4. Solve for the Roots:
The quadratic formula to find the roots [tex]\( x \)[/tex] of the equation is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Plugging in the values:
[tex]\[ x = \frac{-2 \pm \sqrt{64}}{2 \cdot 1} = \frac{-2 \pm 8}{2} \][/tex]
Calculate the two solutions:
[tex]\[ x_1 = \frac{-2 + 8}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x_2 = \frac{-2 - 8}{2} = \frac{-10}{2} = -5 \][/tex]
5. Check if [tex]\( x = 3 \)[/tex] is Indeed a Solution:
One of the solutions we found is [tex]\( x = 3 \)[/tex]. Thus, the statement [tex]\( x = 3 \)[/tex] is correct.
6. Determine the Type of Reasoning:
- Deductive Reasoning: This involves starting with a general statement and deriving a specific conclusion that logically follows from the general premises.
- In this problem, once we solve the equation exactly and find [tex]\( x = 3 \)[/tex], our conclusion follows directly and necessarily from the given premises without any assumptions or probabilities.
Given that the solution [tex]\( x = 3 \)[/tex] follows logically and necessarily from solving the quadratic equation, we conclude that the reasoning used is Deductive, valid.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.