Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the minimum and maximum values for the function [tex]\( k(x) = 10^x \)[/tex] within the given domain interval [tex]\([-3, 1]\)[/tex], we need to evaluate the function at the endpoints of the interval.
1. Identify the endpoints of the interval:
- The minimum value in the domain is [tex]\( x = -3 \)[/tex].
- The maximum value in the domain is [tex]\( x = 1 \)[/tex].
2. Evaluate the function at these points:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ k(-3) = 10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0.001 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ k(1) = 10^1 = 10 \][/tex]
3. Determine the minimum and maximum values:
- The function attains its minimum value at [tex]\( x = -3 \)[/tex], which is
[tex]\[ k(-3) = 0.001 \][/tex]
- The function attains its maximum value at [tex]\( x = 1 \)[/tex], which is
[tex]\[ k(1) = 10 \][/tex]
Therefore, the minimum value of the function [tex]\( k(x) \)[/tex] over the given interval is [tex]\( 0.001 \)[/tex] and the maximum value is [tex]\( 10 \)[/tex].
Hence, the correct answer is:
- Minimum value [tex]\( = 0.001 \)[/tex]
- Maximum value [tex]\( = 10 \)[/tex]
So, the answer is:
[tex]\[ \boxed{\text{minimum value } = 0.001 \text{; maximum value } = 10} \][/tex]
1. Identify the endpoints of the interval:
- The minimum value in the domain is [tex]\( x = -3 \)[/tex].
- The maximum value in the domain is [tex]\( x = 1 \)[/tex].
2. Evaluate the function at these points:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ k(-3) = 10^{-3} = \frac{1}{10^3} = \frac{1}{1000} = 0.001 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ k(1) = 10^1 = 10 \][/tex]
3. Determine the minimum and maximum values:
- The function attains its minimum value at [tex]\( x = -3 \)[/tex], which is
[tex]\[ k(-3) = 0.001 \][/tex]
- The function attains its maximum value at [tex]\( x = 1 \)[/tex], which is
[tex]\[ k(1) = 10 \][/tex]
Therefore, the minimum value of the function [tex]\( k(x) \)[/tex] over the given interval is [tex]\( 0.001 \)[/tex] and the maximum value is [tex]\( 10 \)[/tex].
Hence, the correct answer is:
- Minimum value [tex]\( = 0.001 \)[/tex]
- Maximum value [tex]\( = 10 \)[/tex]
So, the answer is:
[tex]\[ \boxed{\text{minimum value } = 0.001 \text{; maximum value } = 10} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.