Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex], we follow these steps:
1. Understand the definition of the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( x \)[/tex]-axis. This means the [tex]\( y \)[/tex]-value at the [tex]\( x \)[/tex]-intercept is 0.
2. Set the function equal to zero: To find the [tex]\( x \)[/tex]-intercept, we need to solve the equation where the function [tex]\( f(x) \)[/tex] is equal to zero:
[tex]\[ (x + 4)^2 = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ (x + 4)^2 = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we find:
[tex]\[ x = -4 \][/tex]
4. Substitute [tex]\( x \)[/tex] back into the function to verify: To ensure our solution, we substitute [tex]\( -4 \)[/tex] back into the function:
[tex]\[ f(-4) = (-4 + 4)^2 = 0 \][/tex]
Indeed, the [tex]\( y \)[/tex]-value at [tex]\( x = -4 \)[/tex] is 0.
5. Record the intercept: Therefore, the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex] is [tex]\( (-4, 0) \)[/tex].
Now, let's plot this intercept on the graph:
[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline -4 & 0 \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{tabular} \][/tex]
Click or tap on the graph at the point [tex]\((-4, 0)\)[/tex] to plot the [tex]\( x \)[/tex]-intercept.
1. Understand the definition of the [tex]\( x \)[/tex]-intercept: The [tex]\( x \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( x \)[/tex]-axis. This means the [tex]\( y \)[/tex]-value at the [tex]\( x \)[/tex]-intercept is 0.
2. Set the function equal to zero: To find the [tex]\( x \)[/tex]-intercept, we need to solve the equation where the function [tex]\( f(x) \)[/tex] is equal to zero:
[tex]\[ (x + 4)^2 = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ (x + 4)^2 = 0 \][/tex]
Taking the square root of both sides, we get:
[tex]\[ x + 4 = 0 \][/tex]
Solving for [tex]\( x \)[/tex], we find:
[tex]\[ x = -4 \][/tex]
4. Substitute [tex]\( x \)[/tex] back into the function to verify: To ensure our solution, we substitute [tex]\( -4 \)[/tex] back into the function:
[tex]\[ f(-4) = (-4 + 4)^2 = 0 \][/tex]
Indeed, the [tex]\( y \)[/tex]-value at [tex]\( x = -4 \)[/tex] is 0.
5. Record the intercept: Therefore, the [tex]\( x \)[/tex]-intercept of the function [tex]\( f(x) = (x + 4)^2 \)[/tex] is [tex]\( (-4, 0) \)[/tex].
Now, let's plot this intercept on the graph:
[tex]\[ \begin{tabular}{|l|l|} \hline $x$ & $y$ \\ \hline -4 & 0 \\ \hline & \\ \hline & \\ \hline & \\ \hline \end{tabular} \][/tex]
Click or tap on the graph at the point [tex]\((-4, 0)\)[/tex] to plot the [tex]\( x \)[/tex]-intercept.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.