Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's determine which function correctly represents the frog population after [tex]\( x \)[/tex] years, given the conditions outlined.
### Step-by-Step Solution:
1. Identify Initial Population:
Ginny started her study with an initial frog population of 1,200. This means at [tex]\( x = 0 \)[/tex] years, the population was [tex]\( 1,200 \)[/tex].
2. Determine Rate of Decrease:
The population decreases at an average rate of [tex]\( 3\% \)[/tex] per year. A [tex]\( 3\% \)[/tex] decrease is equivalent to keeping [tex]\( 97\% \)[/tex] of the population every year. Thus, the decay rate per year is [tex]\( 0.97 \)[/tex].
3. Formulate the Population Function:
In mathematical terms, a population decreasing by a fixed percentage each year can be described with an exponential decay function. The general form of an exponential decay function is:
[tex]\[ f(x) = a \cdot (b)^x \][/tex]
where:
- [tex]\( a \)[/tex] is the initial population
- [tex]\( b \)[/tex] is the decay factor (in this case, [tex]\( 0.97 \)[/tex], representing [tex]\( 97\% \)[/tex] of the population)
- [tex]\( x \)[/tex] is the number of years
4. Apply Values to the Function:
Plugging the values into the formula, we get:
[tex]\[ f(x) = 1,200 \cdot (0.97)^x \][/tex]
5. Select the Correct Choice:
We now look at the listed options to find the one that matches our derived function:
- Option 1: [tex]\( f(x) = 1,200(1.03)^x \)[/tex]
- Option 2: [tex]\( f(x) = 1,200(0.03)^x \)[/tex]
- Option 3: [tex]\( f(x) = 1,200(0.97)^x \)[/tex]
- Option 4: [tex]\( f(x) = 1,200(0.97x) \)[/tex]
As per our derivation, the function should be [tex]\( f(x) = 1,200(0.97)^x \)[/tex], which corresponds to Option 3.
### Conclusion:
The function that represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200(0.97)^x \][/tex]
Therefore, the correct choice is Option 3.
### Step-by-Step Solution:
1. Identify Initial Population:
Ginny started her study with an initial frog population of 1,200. This means at [tex]\( x = 0 \)[/tex] years, the population was [tex]\( 1,200 \)[/tex].
2. Determine Rate of Decrease:
The population decreases at an average rate of [tex]\( 3\% \)[/tex] per year. A [tex]\( 3\% \)[/tex] decrease is equivalent to keeping [tex]\( 97\% \)[/tex] of the population every year. Thus, the decay rate per year is [tex]\( 0.97 \)[/tex].
3. Formulate the Population Function:
In mathematical terms, a population decreasing by a fixed percentage each year can be described with an exponential decay function. The general form of an exponential decay function is:
[tex]\[ f(x) = a \cdot (b)^x \][/tex]
where:
- [tex]\( a \)[/tex] is the initial population
- [tex]\( b \)[/tex] is the decay factor (in this case, [tex]\( 0.97 \)[/tex], representing [tex]\( 97\% \)[/tex] of the population)
- [tex]\( x \)[/tex] is the number of years
4. Apply Values to the Function:
Plugging the values into the formula, we get:
[tex]\[ f(x) = 1,200 \cdot (0.97)^x \][/tex]
5. Select the Correct Choice:
We now look at the listed options to find the one that matches our derived function:
- Option 1: [tex]\( f(x) = 1,200(1.03)^x \)[/tex]
- Option 2: [tex]\( f(x) = 1,200(0.03)^x \)[/tex]
- Option 3: [tex]\( f(x) = 1,200(0.97)^x \)[/tex]
- Option 4: [tex]\( f(x) = 1,200(0.97x) \)[/tex]
As per our derivation, the function should be [tex]\( f(x) = 1,200(0.97)^x \)[/tex], which corresponds to Option 3.
### Conclusion:
The function that represents the frog population after [tex]\( x \)[/tex] years is:
[tex]\[ f(x) = 1,200(0.97)^x \][/tex]
Therefore, the correct choice is Option 3.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.