At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the scale factor by which the line segment [tex]\(\overline{AB}\)[/tex] was dilated to become [tex]\(\overline{A'B'}\)[/tex] at [tex]\(A'(0,4)\)[/tex] and [tex]\(B'(4,6)\)[/tex], we can follow these steps:
1. Find the distances involved:
- Distance between the origin [tex]\((0, 0)\)[/tex] and [tex]\(A'(0, 4)\)[/tex]:
[tex]\[ \text{distance\_O\_Aprime} = \sqrt{(0-0)^2 + (4-0)^2} = \sqrt{16} = 4 \][/tex]
2. Assume a dilation factor [tex]\(k\)[/tex]:
- Since [tex]\(A'(0, 4)\)[/tex] is the image of point [tex]\(A(0, y)\)[/tex], under dilation by a factor [tex]\(k\)[/tex], we have:
[tex]\[ A'(0, 4) = (0, ky) \implies 4 = ky. \][/tex]
3. Consider the distance between [tex]\(A'\)[/tex] and [tex]\(B'\)[/tex]:
- Distance between [tex]\(A'(0, 4)\)[/tex] and [tex]\(B'(4, 6)\)[/tex]:
[tex]\[ \text{distance\_ABprime} = \sqrt{(4-0)^2 + (6-4)^2} = \sqrt{16 + 4} = \sqrt{20} \approx 4.472 \][/tex]
4. Investigate potential scale factors [tex]\(k\)[/tex]:
- Possible dilation factors given are [tex]\(\frac{1}{2}, 2, 3, 4\)[/tex].
5. Evaluate each scale factor [tex]\(k\)[/tex]:
- For [tex]\(k = \frac{1}{2}\)[/tex]:
[tex]\[ \frac{4}{\frac{1}{2}} = 8 \implies 4 \neq 8 \][/tex]
- For [tex]\(k = 2\)[/tex]:
[tex]\[ \frac{4}{2} = 2 \implies 4 \neq 2 \][/tex]
- For [tex]\(k = 3\)[/tex]:
[tex]\[ \frac{4}{3} \approx 1.333 \implies 4 \neq 1.333 \][/tex]
- For [tex]\(k = 4\)[/tex]:
[tex]\[ \frac{4}{4} = 1 \implies 4 \neq 1 \][/tex]
Given this, none of the provided scale factors correctly reconstruct the original segment distances and transformations under dilation. Therefore, from analyzing our provided information, we can conclude that the correct answer is:
[tex]\[ \boxed{None} \][/tex]
1. Find the distances involved:
- Distance between the origin [tex]\((0, 0)\)[/tex] and [tex]\(A'(0, 4)\)[/tex]:
[tex]\[ \text{distance\_O\_Aprime} = \sqrt{(0-0)^2 + (4-0)^2} = \sqrt{16} = 4 \][/tex]
2. Assume a dilation factor [tex]\(k\)[/tex]:
- Since [tex]\(A'(0, 4)\)[/tex] is the image of point [tex]\(A(0, y)\)[/tex], under dilation by a factor [tex]\(k\)[/tex], we have:
[tex]\[ A'(0, 4) = (0, ky) \implies 4 = ky. \][/tex]
3. Consider the distance between [tex]\(A'\)[/tex] and [tex]\(B'\)[/tex]:
- Distance between [tex]\(A'(0, 4)\)[/tex] and [tex]\(B'(4, 6)\)[/tex]:
[tex]\[ \text{distance\_ABprime} = \sqrt{(4-0)^2 + (6-4)^2} = \sqrt{16 + 4} = \sqrt{20} \approx 4.472 \][/tex]
4. Investigate potential scale factors [tex]\(k\)[/tex]:
- Possible dilation factors given are [tex]\(\frac{1}{2}, 2, 3, 4\)[/tex].
5. Evaluate each scale factor [tex]\(k\)[/tex]:
- For [tex]\(k = \frac{1}{2}\)[/tex]:
[tex]\[ \frac{4}{\frac{1}{2}} = 8 \implies 4 \neq 8 \][/tex]
- For [tex]\(k = 2\)[/tex]:
[tex]\[ \frac{4}{2} = 2 \implies 4 \neq 2 \][/tex]
- For [tex]\(k = 3\)[/tex]:
[tex]\[ \frac{4}{3} \approx 1.333 \implies 4 \neq 1.333 \][/tex]
- For [tex]\(k = 4\)[/tex]:
[tex]\[ \frac{4}{4} = 1 \implies 4 \neq 1 \][/tex]
Given this, none of the provided scale factors correctly reconstruct the original segment distances and transformations under dilation. Therefore, from analyzing our provided information, we can conclude that the correct answer is:
[tex]\[ \boxed{None} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.