Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which of the following are polynomials?

A. [tex]\frac{2}{x^3}+x+\frac{1}{2}[/tex]
B. [tex]\frac{2}{3} x^2+x+1[/tex]
C. [tex]x^2+x+\frac{1}{x^2+1}[/tex]
D. [tex]x^3+2 x+\sqrt{2}[/tex]
E. [tex]x^{\frac{2}{3}}+0 x+1[/tex]


Sagot :

To determine which of the given expressions are polynomials, we need to recall the definition of a polynomial. A polynomial is an algebraic expression consisting of variables and coefficients, with the variables having non-negative integer exponents. The general form of a polynomial in one variable [tex]\( x \)[/tex] is:
[tex]\[ P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \][/tex]
where [tex]\( a_n, a_{n-1}, \ldots, a_1, a_0 \)[/tex] are constants and [tex]\( n \)[/tex] is a non-negative integer.

Let's examine each expression one by one:

### Expression A: [tex]\(\frac{2}{x^3} + x + \frac{1}{2}\)[/tex]
Here, [tex]\(\frac{2}{x^3}\)[/tex] is not a polynomial term because the variable [tex]\( x \)[/tex] is in the denominator, which implies a negative exponent [tex]\( x^{-3} \)[/tex].

### Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\(\frac{2}{3} x^2\)[/tex] (exponent 2)
- [tex]\( x \)[/tex] (exponent 1)
- [tex]\( 1 \)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])

### Expression C: [tex]\(x^2 + x + \frac{1}{x^2 + 1}\)[/tex]
The term [tex]\(\frac{1}{x^2 + 1}\)[/tex] is not a polynomial term because it involves a rational function with [tex]\( x \)[/tex] in the denominator.

### Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\( x^3 \)[/tex] (exponent 3)
- [tex]\( 2x \)[/tex] (exponent 1)
- [tex]\(\sqrt{2}\)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])

### Expression E: [tex]\(x^{\frac{2}{3}} + 0 x + 1\)[/tex]
This expression contains the term [tex]\( x^{\frac{2}{3}} \)[/tex], which has a fractional exponent, thus it is not a polynomial.

Based on the examination, the expressions which are polynomials are:
- Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
- Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]

So, the final result is:
- Expression A: Not a polynomial (False)
- Expression B: Polynomial (True)
- Expression C: Not a polynomial (False)
- Expression D: Polynomial (True)
- Expression E: Not a polynomial (False)

Thus, expressions B and D are polynomials.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.