Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
### Part A: Solve the Inequality
We start with the given inequality:
[tex]\[ \left| \frac{1}{4}x - 2 \right| - 3 \geq 4 \][/tex]
Step 1: Isolate the absolute value expression.
[tex]\[ \left| \frac{1}{4} x - 2 \right| - 3 \geq 4 \][/tex]
Add 3 to both sides:
[tex]\[ \left| \frac{1}{4} x - 2 \right| \geq 7 \][/tex]
Step 2: Translate the absolute value inequality to two separate inequalities.
The absolute value inequality [tex]\(\left| A \right| \geq B\)[/tex] translates to:
[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]
In our case, [tex]\(A = \frac{1}{4} x - 2\)[/tex] and [tex]\(B = 7\)[/tex]. Therefore, we write:
[tex]\[ \frac{1}{4} x - 2 \geq 7 \quad \text{or} \quad \frac{1}{4} x - 2 \leq -7 \][/tex]
Step 3: Solve each inequality separately.
First inequality:
[tex]\[ \frac{1}{4} x - 2 \geq 7 \][/tex]
Add 2 to both sides:
[tex]\[ \frac{1}{4} x \geq 9 \][/tex]
Multiply both sides by 4:
[tex]\[ x \geq 36 \][/tex]
Second inequality:
[tex]\[ \frac{1}{4} x - 2 \leq -7 \][/tex]
Add 2 to both sides:
[tex]\[ \frac{1}{4} x \leq -5 \][/tex]
Multiply both sides by 4:
[tex]\[ x \leq -20 \][/tex]
Step 4: Combine the solutions from the two inequalities.
[tex]\[ x \geq 36 \quad \text{or} \quad x \leq -20 \][/tex]
So, the solution to the inequality is:
[tex]\[ x \geq 36 \quad \text{or} \quad x \leq -20 \][/tex]
### Part B: Describe the Graph of the Solution
The graph will represent the intervals where the inequality holds true. We have two intervals on the x-axis:
[tex]\[ (-\infty, -20] \quad \text{and} \quad [36, \infty) \][/tex]
This means that on the x-axis, the solution set includes all values of [tex]\(x\)[/tex] less than or equal to [tex]\(-20\)[/tex], and all values of [tex]\(x\)[/tex] greater than or equal to [tex]\(36\)[/tex].
On the graph, these intervals will be represented by shading:
- The interval [tex]\((- \infty, -20]\)[/tex] will be shaded, including the point [tex]\(-20\)[/tex].
- The interval [tex]\([36, \infty)\)[/tex] will be shaded, including the point [tex]\(36\)[/tex].
Therefore, the graph of the solution will have shaded intervals at [tex]\((- \infty, -20]\)[/tex] and [tex]\([36, \infty)\)[/tex] on the x-axis.
We start with the given inequality:
[tex]\[ \left| \frac{1}{4}x - 2 \right| - 3 \geq 4 \][/tex]
Step 1: Isolate the absolute value expression.
[tex]\[ \left| \frac{1}{4} x - 2 \right| - 3 \geq 4 \][/tex]
Add 3 to both sides:
[tex]\[ \left| \frac{1}{4} x - 2 \right| \geq 7 \][/tex]
Step 2: Translate the absolute value inequality to two separate inequalities.
The absolute value inequality [tex]\(\left| A \right| \geq B\)[/tex] translates to:
[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]
In our case, [tex]\(A = \frac{1}{4} x - 2\)[/tex] and [tex]\(B = 7\)[/tex]. Therefore, we write:
[tex]\[ \frac{1}{4} x - 2 \geq 7 \quad \text{or} \quad \frac{1}{4} x - 2 \leq -7 \][/tex]
Step 3: Solve each inequality separately.
First inequality:
[tex]\[ \frac{1}{4} x - 2 \geq 7 \][/tex]
Add 2 to both sides:
[tex]\[ \frac{1}{4} x \geq 9 \][/tex]
Multiply both sides by 4:
[tex]\[ x \geq 36 \][/tex]
Second inequality:
[tex]\[ \frac{1}{4} x - 2 \leq -7 \][/tex]
Add 2 to both sides:
[tex]\[ \frac{1}{4} x \leq -5 \][/tex]
Multiply both sides by 4:
[tex]\[ x \leq -20 \][/tex]
Step 4: Combine the solutions from the two inequalities.
[tex]\[ x \geq 36 \quad \text{or} \quad x \leq -20 \][/tex]
So, the solution to the inequality is:
[tex]\[ x \geq 36 \quad \text{or} \quad x \leq -20 \][/tex]
### Part B: Describe the Graph of the Solution
The graph will represent the intervals where the inequality holds true. We have two intervals on the x-axis:
[tex]\[ (-\infty, -20] \quad \text{and} \quad [36, \infty) \][/tex]
This means that on the x-axis, the solution set includes all values of [tex]\(x\)[/tex] less than or equal to [tex]\(-20\)[/tex], and all values of [tex]\(x\)[/tex] greater than or equal to [tex]\(36\)[/tex].
On the graph, these intervals will be represented by shading:
- The interval [tex]\((- \infty, -20]\)[/tex] will be shaded, including the point [tex]\(-20\)[/tex].
- The interval [tex]\([36, \infty)\)[/tex] will be shaded, including the point [tex]\(36\)[/tex].
Therefore, the graph of the solution will have shaded intervals at [tex]\((- \infty, -20]\)[/tex] and [tex]\([36, \infty)\)[/tex] on the x-axis.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.