Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the quadrant in which the terminal point determined by the angle [tex]\(\theta\)[/tex] lies, given that [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], let's analyze the conditions of the trigonometric functions in each quadrant.
1. First quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive.
2. Second quadrant: [tex]\(\sin \theta\)[/tex] is positive, but [tex]\(\cos \theta\)[/tex] is negative.
3. Third quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are negative.
4. Fourth quadrant: [tex]\(\sin \theta\)[/tex] is negative, but [tex]\(\cos \theta\)[/tex] is positive.
Given:
- [tex]\(\sin \theta > 0\)[/tex]
- [tex]\(\cos \theta > 0\)[/tex]
According to the conditions listed above:
- In the first quadrant ([tex]\(\theta\)[/tex] between [tex]\(0\)[/tex] and [tex]\(90\)[/tex] degrees), both sine and cosine values are positive.
Since both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive, [tex]\(\theta\)[/tex] must lie in the first quadrant.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
D. quadrant 1
1. First quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive.
2. Second quadrant: [tex]\(\sin \theta\)[/tex] is positive, but [tex]\(\cos \theta\)[/tex] is negative.
3. Third quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are negative.
4. Fourth quadrant: [tex]\(\sin \theta\)[/tex] is negative, but [tex]\(\cos \theta\)[/tex] is positive.
Given:
- [tex]\(\sin \theta > 0\)[/tex]
- [tex]\(\cos \theta > 0\)[/tex]
According to the conditions listed above:
- In the first quadrant ([tex]\(\theta\)[/tex] between [tex]\(0\)[/tex] and [tex]\(90\)[/tex] degrees), both sine and cosine values are positive.
Since both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive, [tex]\(\theta\)[/tex] must lie in the first quadrant.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
D. quadrant 1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.