Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which set of sides fits a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle, recall the properties of this specific type of triangle:
- The side opposite the [tex]\(30^\circ\)[/tex] angle (short leg) is half the length of the hypotenuse.
- The side opposite the [tex]\(60^\circ\)[/tex] angle (long leg) is [tex]\(\sqrt{3}\)[/tex] times the short leg.
- The hypotenuse is twice the short leg.
We will evaluate each option to see if they satisfy these properties.
Option A: [tex]\(\frac{1}{2}, \frac{\sqrt{3}}{2}, \sqrt{2}\)[/tex]
For these sides to belong to a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- Short leg: [tex]\(\frac{1}{2}\)[/tex]
- Long leg: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- Hypotenuse should be [tex]\(2 \times \frac{1}{2} = 1\)[/tex], but given is [tex]\(\sqrt{2}\)[/tex]
Since [tex]\(\sqrt{2} \neq 1\)[/tex], this option does not represent the sides of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle.
Option B: [tex]\(3 \sqrt{2}, 3 \sqrt{2}, 6\)[/tex]
For these sides to match the properties of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- If both legs are [tex]\(3\sqrt{2}\)[/tex], this makes it an isosceles triangle, not a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle.
- Therefore, this does not fit the properties.
Option C: [tex]\(\sqrt{3}, 3, 2\sqrt{3}\)[/tex]
For these sides to be correct:
- Assume [tex]\(\sqrt{3}\)[/tex] is the short leg.
- Hypotenuse should be twice the short leg: [tex]\(2 \times \sqrt{3} = 2\sqrt{3}\)[/tex]
- The long leg should be [tex]\(\sqrt{3}\)[/tex] times the short leg: [tex]\(\sqrt{3} \times \sqrt{3} = 3\)[/tex]
This option fits the properties: the short leg is [tex]\(\sqrt{3}\)[/tex], the long leg is [tex]\(3\)[/tex], and the hypotenuse is [tex]\(2\sqrt{3}\)[/tex].
Option D: [tex]\(3, 4, 5\)[/tex]
This represents a Pythagorean triplet and describes a right triangle but not a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle since:
- The hypotenuse should be [tex]\(2 \times 3 = 6\)[/tex], and [tex]\(5 \neq 6\)[/tex]
Therefore, the correct answer is:
C. [tex]\(\sqrt{3}, 3, 2\sqrt{3}\)[/tex]
- The side opposite the [tex]\(30^\circ\)[/tex] angle (short leg) is half the length of the hypotenuse.
- The side opposite the [tex]\(60^\circ\)[/tex] angle (long leg) is [tex]\(\sqrt{3}\)[/tex] times the short leg.
- The hypotenuse is twice the short leg.
We will evaluate each option to see if they satisfy these properties.
Option A: [tex]\(\frac{1}{2}, \frac{\sqrt{3}}{2}, \sqrt{2}\)[/tex]
For these sides to belong to a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- Short leg: [tex]\(\frac{1}{2}\)[/tex]
- Long leg: [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- Hypotenuse should be [tex]\(2 \times \frac{1}{2} = 1\)[/tex], but given is [tex]\(\sqrt{2}\)[/tex]
Since [tex]\(\sqrt{2} \neq 1\)[/tex], this option does not represent the sides of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle.
Option B: [tex]\(3 \sqrt{2}, 3 \sqrt{2}, 6\)[/tex]
For these sides to match the properties of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- If both legs are [tex]\(3\sqrt{2}\)[/tex], this makes it an isosceles triangle, not a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle.
- Therefore, this does not fit the properties.
Option C: [tex]\(\sqrt{3}, 3, 2\sqrt{3}\)[/tex]
For these sides to be correct:
- Assume [tex]\(\sqrt{3}\)[/tex] is the short leg.
- Hypotenuse should be twice the short leg: [tex]\(2 \times \sqrt{3} = 2\sqrt{3}\)[/tex]
- The long leg should be [tex]\(\sqrt{3}\)[/tex] times the short leg: [tex]\(\sqrt{3} \times \sqrt{3} = 3\)[/tex]
This option fits the properties: the short leg is [tex]\(\sqrt{3}\)[/tex], the long leg is [tex]\(3\)[/tex], and the hypotenuse is [tex]\(2\sqrt{3}\)[/tex].
Option D: [tex]\(3, 4, 5\)[/tex]
This represents a Pythagorean triplet and describes a right triangle but not a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle since:
- The hypotenuse should be [tex]\(2 \times 3 = 6\)[/tex], and [tex]\(5 \neq 6\)[/tex]
Therefore, the correct answer is:
C. [tex]\(\sqrt{3}, 3, 2\sqrt{3}\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.