Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the electromagnetic force between the two particles, we'll use Coulomb's law, which is given by the formula:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.