Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine if the statement is true or false, let’s use the Euclidean distance formula between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in a plane. The Euclidean distance [tex]\(d\)[/tex] is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this problem, we have the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((3, 7)\)[/tex]. So, [tex]\(x_2 = 3\)[/tex] and [tex]\(y_2 = 7\)[/tex]. Plugging these into the distance formula, we get:
[tex]\[ d = \sqrt{(3 - x_1)^2 + (7 - y_1)^2} \][/tex]
To simplify, consider:
[tex]\[ (3 - x_1)^2 = (x_1 - 3)^2 \][/tex]
[tex]\[ (7 - y_1)^2 = (y_1 - 7)^2 \][/tex]
So, we can rewrite the distance as:
[tex]\[ d = \sqrt{(x_1 - 3)^2 + (y_1 - 7)^2} \][/tex]
The statement given is that the distance between the points [tex]\((3, 7)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is:
[tex]\[ \sqrt{(x_1-3)^2+(y_1-7)^2} \][/tex]
This matches the Euclidean distance formula derived above. Hence, the statement is:
A. True
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
In this problem, we have the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((3, 7)\)[/tex]. So, [tex]\(x_2 = 3\)[/tex] and [tex]\(y_2 = 7\)[/tex]. Plugging these into the distance formula, we get:
[tex]\[ d = \sqrt{(3 - x_1)^2 + (7 - y_1)^2} \][/tex]
To simplify, consider:
[tex]\[ (3 - x_1)^2 = (x_1 - 3)^2 \][/tex]
[tex]\[ (7 - y_1)^2 = (y_1 - 7)^2 \][/tex]
So, we can rewrite the distance as:
[tex]\[ d = \sqrt{(x_1 - 3)^2 + (y_1 - 7)^2} \][/tex]
The statement given is that the distance between the points [tex]\((3, 7)\)[/tex] and [tex]\((x_1, y_1)\)[/tex] is:
[tex]\[ \sqrt{(x_1-3)^2+(y_1-7)^2} \][/tex]
This matches the Euclidean distance formula derived above. Hence, the statement is:
A. True
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.