At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's solve the questions step-by-step.
### Step-by-Step Solution:
1. Understanding the Molar Volume at STP:
- At Standard Temperature and Pressure (STP), one mole of any ideal gas occupies 22.4 liters. This is a key fact that we will use for our calculations.
2. Question 11: Volume of Xenon (Xe) at STP for 3.4 moles:
- We need to find the volume that 3.4 moles of Xenon (Xe) will occupy at STP.
- Since 1 mole of any gas at STP occupies 22.4 liters, we calculate the volume for 3.4 moles by multiplying the number of moles by the molar volume:
- Volume of Xe at STP = [tex]\( \text{moles} \times \text{molar volume} \)[/tex]
- Volume of Xe at STP = [tex]\( 3.4 \, \text{moles} \times 22.4 \, \text{L/mole} \)[/tex]
- Volume of Xe at STP = 76.16 liters
3. Question 13: Volume of Phosgene (PO[tex]\(_3\)[/tex]) at STP for 12.7 moles:
- We need to find the volume that 12.7 moles of Phosgene (PO[tex]\(_3\)[/tex]) will occupy at STP.
- Again, using the molar volume at STP (22.4 liters per mole), we calculate the volume for 12.7 moles:
- Volume of PO[tex]\(_3\)[/tex] at STP = [tex]\( \text{moles} \times \text{molar volume} \)[/tex]
- Volume of PO[tex]\(_3\)[/tex] at STP = [tex]\( 12.7 \, \text{moles} \times 22.4 \, \text{L/mole} \)[/tex]
- Volume of PO[tex]\(_3\)[/tex] at STP = 284.48 liters
### Summary of Results:
- Volume of 3.4 moles of Xe at STP: 76.16 liters
- Volume of 12.7 moles of PO[tex]\(_3\)[/tex] at STP: 284.48 liters
These calculations demonstrate the volumes of the respective gases at STP based on the given number of moles and the molar volume constant.
### Step-by-Step Solution:
1. Understanding the Molar Volume at STP:
- At Standard Temperature and Pressure (STP), one mole of any ideal gas occupies 22.4 liters. This is a key fact that we will use for our calculations.
2. Question 11: Volume of Xenon (Xe) at STP for 3.4 moles:
- We need to find the volume that 3.4 moles of Xenon (Xe) will occupy at STP.
- Since 1 mole of any gas at STP occupies 22.4 liters, we calculate the volume for 3.4 moles by multiplying the number of moles by the molar volume:
- Volume of Xe at STP = [tex]\( \text{moles} \times \text{molar volume} \)[/tex]
- Volume of Xe at STP = [tex]\( 3.4 \, \text{moles} \times 22.4 \, \text{L/mole} \)[/tex]
- Volume of Xe at STP = 76.16 liters
3. Question 13: Volume of Phosgene (PO[tex]\(_3\)[/tex]) at STP for 12.7 moles:
- We need to find the volume that 12.7 moles of Phosgene (PO[tex]\(_3\)[/tex]) will occupy at STP.
- Again, using the molar volume at STP (22.4 liters per mole), we calculate the volume for 12.7 moles:
- Volume of PO[tex]\(_3\)[/tex] at STP = [tex]\( \text{moles} \times \text{molar volume} \)[/tex]
- Volume of PO[tex]\(_3\)[/tex] at STP = [tex]\( 12.7 \, \text{moles} \times 22.4 \, \text{L/mole} \)[/tex]
- Volume of PO[tex]\(_3\)[/tex] at STP = 284.48 liters
### Summary of Results:
- Volume of 3.4 moles of Xe at STP: 76.16 liters
- Volume of 12.7 moles of PO[tex]\(_3\)[/tex] at STP: 284.48 liters
These calculations demonstrate the volumes of the respective gases at STP based on the given number of moles and the molar volume constant.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.
Given the two triangles are similar, what are the values of q and t? Round to the nearest hundredth.