Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, I'd be happy to explain this step by step!
Given the information:
- We know the line passes through the points [tex]\(A(-6, 6)\)[/tex] and [tex]\(B(12, 3)\)[/tex].
- The slope [tex]\(m\)[/tex] of the line is given as [tex]\(-\frac{1}{6}\)[/tex].
We need to determine the y-intercept [tex]\(b\)[/tex] in the slope-intercept form of the equation of the line, which is [tex]\(y = mx + b\)[/tex].
### Step-by-Step Solution:
1. Identify what we know:
- Slope ([tex]\(m\)[/tex]): [tex]\(-\frac{1}{6}\)[/tex]
- Coordinates of point [tex]\(A\)[/tex]: [tex]\( (-6, 6) \)[/tex]
2. Recall the equation of a line in slope-intercept form:
[tex]\[ y = mx + b \][/tex]
Where:
- [tex]\(y\)[/tex] is the y-coordinate of the point on the line
- [tex]\(m\)[/tex] is the slope of the line
- [tex]\(x\)[/tex] is the x-coordinate of the point on the line
- [tex]\(b\)[/tex] is the y-intercept of the line
3. Substitute the coordinates of point [tex]\(A\)[/tex] and the slope into the equation:
- For point [tex]\(A(-6, 6)\)[/tex]: [tex]\(x = -6\)[/tex] and [tex]\(y = 6\)[/tex]
- Slope [tex]\(m = -\frac{1}{6}\)[/tex]
Substituting these into [tex]\(y = mx + b\)[/tex]:
[tex]\[ 6 = -\frac{1}{6} \times (-6) + b \][/tex]
4. Solve for [tex]\(b\)[/tex]:
- Calculate the product: [tex]\(-\frac{1}{6} \times (-6)\)[/tex]:
[tex]\[ -\frac{1}{6} \times -6 = 1 \][/tex]
So the equation now looks like:
[tex]\[ 6 = 1 + b \][/tex]
- Isolate [tex]\(b\)[/tex] by subtracting 1 from both sides:
[tex]\[ 6 - 1 = b \][/tex]
[tex]\[ b = 5 \][/tex]
Therefore, the y-intercept [tex]\(b\)[/tex] is [tex]\(5\)[/tex].
So the value of [tex]\(b\)[/tex] is [tex]\(\boxed{5}\)[/tex].
Given the information:
- We know the line passes through the points [tex]\(A(-6, 6)\)[/tex] and [tex]\(B(12, 3)\)[/tex].
- The slope [tex]\(m\)[/tex] of the line is given as [tex]\(-\frac{1}{6}\)[/tex].
We need to determine the y-intercept [tex]\(b\)[/tex] in the slope-intercept form of the equation of the line, which is [tex]\(y = mx + b\)[/tex].
### Step-by-Step Solution:
1. Identify what we know:
- Slope ([tex]\(m\)[/tex]): [tex]\(-\frac{1}{6}\)[/tex]
- Coordinates of point [tex]\(A\)[/tex]: [tex]\( (-6, 6) \)[/tex]
2. Recall the equation of a line in slope-intercept form:
[tex]\[ y = mx + b \][/tex]
Where:
- [tex]\(y\)[/tex] is the y-coordinate of the point on the line
- [tex]\(m\)[/tex] is the slope of the line
- [tex]\(x\)[/tex] is the x-coordinate of the point on the line
- [tex]\(b\)[/tex] is the y-intercept of the line
3. Substitute the coordinates of point [tex]\(A\)[/tex] and the slope into the equation:
- For point [tex]\(A(-6, 6)\)[/tex]: [tex]\(x = -6\)[/tex] and [tex]\(y = 6\)[/tex]
- Slope [tex]\(m = -\frac{1}{6}\)[/tex]
Substituting these into [tex]\(y = mx + b\)[/tex]:
[tex]\[ 6 = -\frac{1}{6} \times (-6) + b \][/tex]
4. Solve for [tex]\(b\)[/tex]:
- Calculate the product: [tex]\(-\frac{1}{6} \times (-6)\)[/tex]:
[tex]\[ -\frac{1}{6} \times -6 = 1 \][/tex]
So the equation now looks like:
[tex]\[ 6 = 1 + b \][/tex]
- Isolate [tex]\(b\)[/tex] by subtracting 1 from both sides:
[tex]\[ 6 - 1 = b \][/tex]
[tex]\[ b = 5 \][/tex]
Therefore, the y-intercept [tex]\(b\)[/tex] is [tex]\(5\)[/tex].
So the value of [tex]\(b\)[/tex] is [tex]\(\boxed{5}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.