Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Alright! Let's prove the given statements step-by-step.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
### (7.1) [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex]
To prove this, we need to show two implications:
1. If [tex]\(T(v) = 0\)[/tex], then [tex]\(T^(v) = 0\)[/tex].
2. If [tex]\(T^(v) = 0\)[/tex], then [tex]\(T(v) = 0\)[/tex].
#### Implication 1: [tex]\( T(v) = 0 \implies T^(v) = 0 \)[/tex]
Assume [tex]\( T(v) = 0 \)[/tex]. We want to show that [tex]\( T^(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Since [tex]\( T(v) = 0 \)[/tex],
[tex]\[ \langle 0, u \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle 0, u \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( v \)[/tex] is orthogonal to every vector of the form [tex]\( T^(u) \)[/tex]. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T^(v) = 0 \][/tex]
#### Implication 2: [tex]\( T^(v) = 0 \implies T(v) = 0 \)[/tex]
Assume [tex]\( T^(v) = 0 \)[/tex]. We want to show that [tex]\( T(v) = 0 \)[/tex].
Let [tex]\( u \)[/tex] be any vector in the Hilbert space.
[tex]\[ \langle v, T^(u) \rangle = 0 \][/tex]
Since [tex]\( T^(v) = 0 \)[/tex],
[tex]\[ \langle v, 0 \rangle = 0 \][/tex]
Using the property of the inner product, [tex]\( \langle v, 0 \rangle = 0 \)[/tex] for all [tex]\( u \)[/tex]. Therefore, we have:
[tex]\[ \langle T(v), u \rangle = 0 \][/tex]
Because [tex]\( u \)[/tex] was arbitrary, this implies [tex]\( T(v) \)[/tex] is orthogonal to every vector. The only vector orthogonal to a dense subset in a Hilbert space is the zero vector. Thus,
[tex]\[ T(v) = 0 \][/tex]
This completes the proof for [tex]\( T(v) = 0 \)[/tex] if and only if [tex]\( T^(v) = 0 \)[/tex].
### (7.2) [tex]\( T - \lambda I \)[/tex] is normal, where [tex]\( \lambda \)[/tex] is a scalar
To prove this, we need to show that [tex]\( (T - \lambda I) \)[/tex] is normal if [tex]\( T \)[/tex] is normal. Recall that an operator [tex]\( T \)[/tex] is normal if [tex]\( T T^ = T^ T \)[/tex].
First, note that [tex]\( T - \lambda I \)[/tex] is the operator [tex]\( T \)[/tex] shifted by [tex]\( \lambda \)[/tex], where [tex]\( I \)[/tex] is the identity operator.
Given that [tex]\( T - \lambda I \)[/tex]'s adjoint is [tex]\( T^ - \bar{\lambda} I \)[/tex]:
[tex]\[ (T - \lambda I)^ = T^ - \bar{\lambda}I \][/tex]
Let's show that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^ - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Expanding both sides, we get:
Left Side (LS):
[tex]\[ (T - \lambda I) (T^ - \bar{\lambda} I) = T T^ - T \bar{\lambda} I - \lambda I T^ + \lambda \bar{\lambda} I \][/tex]
Right Side (RS):
[tex]\[ (T^ - \bar{\lambda} I) (T - \lambda I) = T^ T - T^ \lambda I - \bar{\lambda} I T + \bar{\lambda} \lambda I \][/tex]
Notice:
[tex]\[ \lambda \bar{\lambda} = \bar{\lambda} \lambda \][/tex]
[tex]\[ T \bar{\lambda} I = \bar{\lambda} T I = \bar{\lambda} T \][/tex]
[tex]\[ \lambda I T^ = \lambda T^ I = \lambda T^ \][/tex]
Given that [tex]\(T\)[/tex] is normal ([tex]\(T T^ = T^ T\)[/tex]):
[tex]\[ LS = T T^ - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
[tex]\[ RS = T^ T - \lambda T^ - \bar{\lambda} T + \lambda \bar{\lambda} I \][/tex]
Since [tex]\( T T^ = T^ T \)[/tex],
[tex]\[ LS = TS = RS \][/tex]
Hence, [tex]\( LS = RS \)[/tex], proving that [tex]\( (T - \lambda I) (T^ - \bar{\lambda} I) = (T^* - \bar{\lambda} I) (T - \lambda I) \)[/tex].
Therefore, [tex]\( T - \lambda I \)[/tex] is normal.
This completes the proof for [tex]\( T - \lambda I \)[/tex] being normal.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.