Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
To determine the nature of the sequence 7, 14, 28, 56, 112, let's analyze it:
**Arithmetic Sequence**:
An arithmetic sequence is one in which each term after the first is obtained by adding a constant difference to the previous term.
Let's check if the sequence 7, 14, 28, 56, 112 is arithmetic:
- Difference between 14 and 7: \( 14 - 7 = 7 \)
- Difference between 28 and 14: \( 28 - 14 = 14 \)
- Difference between 56 and 28: \( 56 - 28 = 28 \)
- Difference between 112 and 56: \( 112 - 56 = 56 \)
The differences (7, 14, 28, 56) are not consistent, indicating that the sequence is not arithmetic.
**Geometric Sequence**:
A geometric sequence is one in which each term after the first is obtained by multiplying the previous term by a constant ratio.
Let's check if the sequence 7, 14, 28, 56, 112 is geometric:
- Ratio between 14 and 7: \( \frac{14}{7} = 2 \)
- Ratio between 28 and 14: \( \frac{28}{14} = 2 \)
- Ratio between 56 and 28: \( \frac{56}{28} = 2 \)
- Ratio between 112 and 56: \( \frac{112}{56} = 2 \)
The ratios (2, 2, 2, 2) are consistent, indicating that the sequence is geometric with a common ratio of 2.
Therefore, the sequence 7, 14, 28, 56, 112 is **geometric**.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.