Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To analyze the end behavior of the function [tex]\( f(x) = 5x^3 - 3x + 332 \)[/tex], let's break down the components and properties of this polynomial.
1. Identify the leading term:
The function [tex]\( f(x) \)[/tex] is a polynomial, and the term with the highest power of [tex]\( x \)[/tex] dictates the end behavior of the function. Here, the leading term is [tex]\( 5x^3 \)[/tex].
2. Consider the leading coefficient:
In the term [tex]\( 5x^3 \)[/tex], the leading coefficient is 5, which is positive.
3. Examine the degree of the polynomial:
The degree of the polynomial is the highest power of [tex]\( x \)[/tex], which in this case is 3. Since 3 is odd, the end behavior will differ at [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex].
Based on these components:
- When [tex]\( x \to \infty \)[/tex] (as [tex]\( x \)[/tex] approaches positive infinity), the term [tex]\( 5x^3 \)[/tex] grows rapidly in the positive direction because the coefficient 5 is positive. Therefore, [tex]\( f(x) \)[/tex] will also tend to [tex]\( \infty \)[/tex].
- When [tex]\( x \to -\infty \)[/tex] (as [tex]\( x \)[/tex] approaches negative infinity), the term [tex]\( 5x^3 \)[/tex] grows rapidly in the negative direction (since [tex]\( x^3 \)[/tex] becomes more negative and is multiplied by 5). Therefore, [tex]\( f(x) \)[/tex] will tend to [tex]\( -\infty \)[/tex].
Hence, for an odd-degree polynomial with a positive leading coefficient, the left end (as [tex]\( x \to -\infty \)[/tex]) goes down (towards negative infinity) and the right end (as [tex]\( x \to \infty \)[/tex]) goes up (towards positive infinity).
This perfectly matches option:
D. The leading coefficient is positive so the left end goes down.
Therefore, the correct choice is [tex]\(\boxed{D}\)[/tex].
1. Identify the leading term:
The function [tex]\( f(x) \)[/tex] is a polynomial, and the term with the highest power of [tex]\( x \)[/tex] dictates the end behavior of the function. Here, the leading term is [tex]\( 5x^3 \)[/tex].
2. Consider the leading coefficient:
In the term [tex]\( 5x^3 \)[/tex], the leading coefficient is 5, which is positive.
3. Examine the degree of the polynomial:
The degree of the polynomial is the highest power of [tex]\( x \)[/tex], which in this case is 3. Since 3 is odd, the end behavior will differ at [tex]\( x \to \infty \)[/tex] and [tex]\( x \to -\infty \)[/tex].
Based on these components:
- When [tex]\( x \to \infty \)[/tex] (as [tex]\( x \)[/tex] approaches positive infinity), the term [tex]\( 5x^3 \)[/tex] grows rapidly in the positive direction because the coefficient 5 is positive. Therefore, [tex]\( f(x) \)[/tex] will also tend to [tex]\( \infty \)[/tex].
- When [tex]\( x \to -\infty \)[/tex] (as [tex]\( x \)[/tex] approaches negative infinity), the term [tex]\( 5x^3 \)[/tex] grows rapidly in the negative direction (since [tex]\( x^3 \)[/tex] becomes more negative and is multiplied by 5). Therefore, [tex]\( f(x) \)[/tex] will tend to [tex]\( -\infty \)[/tex].
Hence, for an odd-degree polynomial with a positive leading coefficient, the left end (as [tex]\( x \to -\infty \)[/tex]) goes down (towards negative infinity) and the right end (as [tex]\( x \to \infty \)[/tex]) goes up (towards positive infinity).
This perfectly matches option:
D. The leading coefficient is positive so the left end goes down.
Therefore, the correct choice is [tex]\(\boxed{D}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.