Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's solve the equation step by step:
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
We start with the given equation:
[tex]\[ y - y_1 = m (x - x_1) \][/tex]
Our goal is to solve for [tex]\( x \)[/tex].
### Step 1: Distribute [tex]\( m \)[/tex]
We can distribute [tex]\( m \)[/tex] on the right-hand side:
[tex]\[ y - y_1 = m x - m x_1 \][/tex]
### Step 2: Isolate the term involving [tex]\( x \)[/tex]
To isolate [tex]\( x \)[/tex], we add [tex]\( m x_1 \)[/tex] to both sides of the equation:
[tex]\[ y - y_1 + m x_1 = m x \][/tex]
### Step 3: Solve for [tex]\( x \)[/tex]
Now, we divide both sides by [tex]\( m \)[/tex] to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y - y_1 + m x_1}{m} \][/tex]
This can be simplified as:
[tex]\[ x = \frac{y - y_1}{m} + \frac{m x_1}{m} \][/tex]
Since [tex]\(\frac{m x_1}{m}\)[/tex] simplifies to [tex]\( x_1 \)[/tex], we get:
[tex]\[ x = \frac{y - y_1}{m} + x_1 \][/tex]
### Conclusion
Now, let's compare this solution with the given options:
A. [tex]\( x = \frac{y - y_1 + x_1}{m} \)[/tex]
B. [tex]\( x = \frac{y - y_1}{m} - x_1 \)[/tex]
C. [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex]
D. [tex]\( x = \frac{m \left(y - y_1\right)}{x_1} \)[/tex]
The correct option that matches our simplified solution is:
[tex]\[ \boxed{C} \][/tex]
Thus, the correct solution is [tex]\( x = \frac{y - y_1}{m} + x_1 \)[/tex], which corresponds to option C.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.