Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the range of the quadratic function [tex]\( f(x) = 2x^2 - 16x + 28 \)[/tex], we need to follow these steps:
1. Determine the direction of the parabola:
Since the coefficient of [tex]\( x^2 \)[/tex] is positive (2 in this case), the parabola opens upwards. This implies that the function has a minimum value at the vertex.
2. Find the vertex of the parabola:
The vertex form of a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = -16 \)[/tex]
- [tex]\( c = 28 \)[/tex]
Calculate the x-coordinate of the vertex:
[tex]\[ x = -\frac{b}{2a} = -\frac{-16}{2 \cdot 2} = \frac{16}{4} = 4 \][/tex]
3. Find the y-coordinate of the vertex:
Substitute [tex]\( x = 4 \)[/tex] into the function to find [tex]\( f(4) \)[/tex]:
[tex]\[ f(4) = 2(4)^2 - 16(4) + 28 = 2 \cdot 16 - 64 + 28 = 32 - 64 + 28 = -4 \][/tex]
Therefore, the vertex of the parabola is at [tex]\( (4, -4) \)[/tex].
4. Determine the range of the function:
Since the parabola opens upwards, the y-coordinate of the vertex represents the minimum value of [tex]\( f(x) \)[/tex]. Thus, the minimum value of the function is [tex]\( -4 \)[/tex].
The range of the function is all y-values greater than or equal to this minimum value. In interval notation, the range is:
[tex]\[ \boxed{[-4, \infty)} \][/tex]
1. Determine the direction of the parabola:
Since the coefficient of [tex]\( x^2 \)[/tex] is positive (2 in this case), the parabola opens upwards. This implies that the function has a minimum value at the vertex.
2. Find the vertex of the parabola:
The vertex form of a quadratic function [tex]\( f(x) = ax^2 + bx + c \)[/tex] occurs at [tex]\( x = -\frac{b}{2a} \)[/tex].
Given:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = -16 \)[/tex]
- [tex]\( c = 28 \)[/tex]
Calculate the x-coordinate of the vertex:
[tex]\[ x = -\frac{b}{2a} = -\frac{-16}{2 \cdot 2} = \frac{16}{4} = 4 \][/tex]
3. Find the y-coordinate of the vertex:
Substitute [tex]\( x = 4 \)[/tex] into the function to find [tex]\( f(4) \)[/tex]:
[tex]\[ f(4) = 2(4)^2 - 16(4) + 28 = 2 \cdot 16 - 64 + 28 = 32 - 64 + 28 = -4 \][/tex]
Therefore, the vertex of the parabola is at [tex]\( (4, -4) \)[/tex].
4. Determine the range of the function:
Since the parabola opens upwards, the y-coordinate of the vertex represents the minimum value of [tex]\( f(x) \)[/tex]. Thus, the minimum value of the function is [tex]\( -4 \)[/tex].
The range of the function is all y-values greater than or equal to this minimum value. In interval notation, the range is:
[tex]\[ \boxed{[-4, \infty)} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.