At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the exact value of [tex]\(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\)[/tex] in radians, let's go through the following steps:
1. Understand the function: The expression [tex]\(\sin^{-1}(x)\)[/tex], also known as [tex]\(\arcsin(x)\)[/tex], denotes the angle [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = x\)[/tex]. This angle [tex]\(\theta\)[/tex] lies in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
2. Recognize the sine value: We need to find the angle [tex]\(\theta\)[/tex] for which [tex]\(\sin(\theta) = -\frac{\sqrt{3}}{2}\)[/tex].
3. Identify the reference angle: The reference angle for [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] is the positive angle that would give us [tex]\(\frac{\sqrt{3}}{2}\)[/tex]. We know that:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
4. Determine the correct quadrant: Since [tex]\(\sin(\theta) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\(\theta\)[/tex] must be in the fourth quadrant and the angle should be negative because the arcsine function's range is [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
5. Find the exact angle in radians: Reflecting the angle [tex]\(\frac{\pi}{3}\)[/tex] in the fourth quadrant gives us [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the exact value of [tex]\(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\)[/tex] in radians in terms of [tex]\(\pi\)[/tex] is:
[tex]\[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \][/tex]
Therefore, we have:
[tex]\[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \][/tex]
1. Understand the function: The expression [tex]\(\sin^{-1}(x)\)[/tex], also known as [tex]\(\arcsin(x)\)[/tex], denotes the angle [tex]\(\theta\)[/tex] such that [tex]\(\sin(\theta) = x\)[/tex]. This angle [tex]\(\theta\)[/tex] lies in the range [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
2. Recognize the sine value: We need to find the angle [tex]\(\theta\)[/tex] for which [tex]\(\sin(\theta) = -\frac{\sqrt{3}}{2}\)[/tex].
3. Identify the reference angle: The reference angle for [tex]\(-\frac{\sqrt{3}}{2}\)[/tex] is the positive angle that would give us [tex]\(\frac{\sqrt{3}}{2}\)[/tex]. We know that:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
4. Determine the correct quadrant: Since [tex]\(\sin(\theta) = -\frac{\sqrt{3}}{2}\)[/tex], [tex]\(\theta\)[/tex] must be in the fourth quadrant and the angle should be negative because the arcsine function's range is [tex]\([- \frac{\pi}{2}, \frac{\pi}{2}]\)[/tex].
5. Find the exact angle in radians: Reflecting the angle [tex]\(\frac{\pi}{3}\)[/tex] in the fourth quadrant gives us [tex]\(-\frac{\pi}{3}\)[/tex].
Thus, the exact value of [tex]\(\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\)[/tex] in radians in terms of [tex]\(\pi\)[/tex] is:
[tex]\[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \][/tex]
Therefore, we have:
[tex]\[ \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.