Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the probability of striking the bull's-eye 3 times in a row when you have a [tex]\(\frac{1}{6}\)[/tex] chance to hit it each time, follow these steps:
1. Identify the probability of hitting the bull's-eye in a single throw:
The probability of hitting the bull's-eye with one throw is:
[tex]\[ \text{Probability} (\text{Single Throw}) = \frac{1}{6} \][/tex]
2. Calculate the probability of hitting the bull's-eye 3 times consecutively:
Since each throw is an independent event, the probability of hitting the bull's-eye 3 times in a row is the product of the probabilities of each individual throw.
[tex]\[ \text{Probability} (\text{3 Throws}) = \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \][/tex]
Simplify this:
[tex]\[ \left( \frac{1}{6} \right)^3 = \frac{1}{216} \][/tex]
3. Compare the calculated probability with the given choices:
The calculated probability of hitting the bull's-eye 3 times in a row is [tex]\(\frac{1}{216}\)[/tex]. Now, compare this with the answer choices provided:
- A. [tex]\(\frac{5}{136} \approx 0.0367647\)[/tex]
- B. [tex]\(\frac{1}{210} \approx 0.0047619\)[/tex]
- C. [tex]\(\frac{3}{233} \approx 0.0128756\)[/tex]
- D. [tex]\(\frac{1}{100} = 0.01\)[/tex]
4. Identify the correct choice:
The choice that matches [tex]\(\frac{1}{216}\)[/tex] most closely is:
[tex]\[ \text{Choice B:} \frac{1}{210} \approx 0.0047619 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B. \frac{1}{210}} \][/tex]
1. Identify the probability of hitting the bull's-eye in a single throw:
The probability of hitting the bull's-eye with one throw is:
[tex]\[ \text{Probability} (\text{Single Throw}) = \frac{1}{6} \][/tex]
2. Calculate the probability of hitting the bull's-eye 3 times consecutively:
Since each throw is an independent event, the probability of hitting the bull's-eye 3 times in a row is the product of the probabilities of each individual throw.
[tex]\[ \text{Probability} (\text{3 Throws}) = \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \times \left( \frac{1}{6} \right) \][/tex]
Simplify this:
[tex]\[ \left( \frac{1}{6} \right)^3 = \frac{1}{216} \][/tex]
3. Compare the calculated probability with the given choices:
The calculated probability of hitting the bull's-eye 3 times in a row is [tex]\(\frac{1}{216}\)[/tex]. Now, compare this with the answer choices provided:
- A. [tex]\(\frac{5}{136} \approx 0.0367647\)[/tex]
- B. [tex]\(\frac{1}{210} \approx 0.0047619\)[/tex]
- C. [tex]\(\frac{3}{233} \approx 0.0128756\)[/tex]
- D. [tex]\(\frac{1}{100} = 0.01\)[/tex]
4. Identify the correct choice:
The choice that matches [tex]\(\frac{1}{216}\)[/tex] most closely is:
[tex]\[ \text{Choice B:} \frac{1}{210} \approx 0.0047619 \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{B. \frac{1}{210}} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.