Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the value of [tex]\( a \)[/tex] in the quadratic function's equation [tex]\( y = ax^2 + bx + c \)[/tex], we follow these steps:
1. Identify and list the points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Calculate the first differences:
[tex]\[ \begin{aligned} \Delta_1 &= -3.75 - (-3) = -0.75 \\ \Delta_2 &= -4 - (-3.75) = -0.25 \\ \Delta_3 &= -3.75 - (-4) = 0.25 \\ \Delta_4 &= -3 - (-3.75) = 0.75 \\ \Delta_5 &= -1.75 - (-3) = 1.25 \\ \end{aligned} \][/tex]
3. Calculate the second differences:
[tex]\[ \begin{aligned} \Delta^2_1 &= -0.25 - (-0.75) = 0.5 \\ \Delta^2_2 &= 0.25 - (-0.25) = 0.5 \\ \Delta^2_3 &= 0.75 - 0.25 = 0.5 \\ \Delta^2_4 &= 1.25 - 0.75 = 0.5 \\ \end{aligned} \][/tex]
You can observe that all the second differences are constant and equal to [tex]\( 0.5 \)[/tex].
4. Find the coefficient [tex]\( a \)[/tex] from the second differences:
- For a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex], the second differences are equal to [tex]\( 2a \)[/tex].
- Given that the second differences are [tex]\( 0.5 \)[/tex], we can set up the equation:
[tex]\[ 2a = 0.5 \][/tex]
- Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{0.5}{2} = 0.25 \][/tex]
Therefore, the value of [tex]\( a \)[/tex] in the function's equation is [tex]\( \boxed{\frac{1}{4}} \)[/tex]. Thus, the correct answer is [tex]\( \text{C.} \frac{1}{4} \)[/tex].
1. Identify and list the points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0 & -3 \\ \hline 1 & -3.75 \\ \hline 2 & -4 \\ \hline 3 & -3.75 \\ \hline 4 & -3 \\ \hline 5 & -1.75 \\ \hline \end{array} \][/tex]
2. Calculate the first differences:
[tex]\[ \begin{aligned} \Delta_1 &= -3.75 - (-3) = -0.75 \\ \Delta_2 &= -4 - (-3.75) = -0.25 \\ \Delta_3 &= -3.75 - (-4) = 0.25 \\ \Delta_4 &= -3 - (-3.75) = 0.75 \\ \Delta_5 &= -1.75 - (-3) = 1.25 \\ \end{aligned} \][/tex]
3. Calculate the second differences:
[tex]\[ \begin{aligned} \Delta^2_1 &= -0.25 - (-0.75) = 0.5 \\ \Delta^2_2 &= 0.25 - (-0.25) = 0.5 \\ \Delta^2_3 &= 0.75 - 0.25 = 0.5 \\ \Delta^2_4 &= 1.25 - 0.75 = 0.5 \\ \end{aligned} \][/tex]
You can observe that all the second differences are constant and equal to [tex]\( 0.5 \)[/tex].
4. Find the coefficient [tex]\( a \)[/tex] from the second differences:
- For a quadratic function [tex]\( y = ax^2 + bx + c \)[/tex], the second differences are equal to [tex]\( 2a \)[/tex].
- Given that the second differences are [tex]\( 0.5 \)[/tex], we can set up the equation:
[tex]\[ 2a = 0.5 \][/tex]
- Solving for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{0.5}{2} = 0.25 \][/tex]
Therefore, the value of [tex]\( a \)[/tex] in the function's equation is [tex]\( \boxed{\frac{1}{4}} \)[/tex]. Thus, the correct answer is [tex]\( \text{C.} \frac{1}{4} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.