Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's consider the inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex]. This inequality describes a region in the coordinate plane.
### Step-by-Step Solution:
1. Understanding the Inequality:
- The inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex] means that for any point [tex]\((x, y)\)[/tex] in the coordinate plane, the y-coordinate of the point should be greater than or equal to the expression [tex]\( \frac{9}{4} x - 5 \)[/tex].
2. Graphing the Boundary Line:
- First, let's graph the boundary line represented by the equation [tex]\( y = \frac{9}{4} x - 5 \)[/tex]. This is a straight line with a slope of [tex]\(\frac{9}{4}\)[/tex] and a y-intercept of [tex]\(-5\)[/tex].
- Slope: [tex]\(\frac{9}{4}\)[/tex] tells us that for every increase of 4 units in the x-direction, [tex]\( y \)[/tex] increases by 9 units.
- Y-intercept: The line crosses the y-axis at [tex]\(-5\)[/tex] (i.e., the point [tex]\((0, -5)\)[/tex]).
3. Shading the Region:
- The inequality symbol [tex]\( \geq \)[/tex] indicates that the region of interest includes the line itself (since [tex]\( y \)[/tex] can be equal to [tex]\( \frac{9}{4} x - 5 \)[/tex]), as well as the region above this line.
- To shade the correct region, choose a test point that is not on the boundary line, for instance, [tex]\((0, 0)\)[/tex].
- Substitute [tex]\((0, 0)\)[/tex] into the inequality: [tex]\( 0 \geq \frac{9}{4} \cdot 0 - 5 \)[/tex]
- Simplifies to: [tex]\( 0 \geq -5 \)[/tex], which is true.
- Hence, [tex]\((0, 0)\)[/tex] is in the region satisfying the inequality, so we shade the area above and including the line [tex]\( y = \frac{9}{4} x - 5 \)[/tex].
4. Verify a Specific Point:
- Let's verify if a specific point [tex]\((4, 6)\)[/tex] lies within the region defined by the inequality:
- Substitute [tex]\( x = 4\)[/tex] and [tex]\( y = 6\)[/tex] into the inequality:
[tex]\[ 6 \geq \frac{9}{4} \cdot 4 - 5 \][/tex]
- Simplify the right side:
[tex]\[ 6 \geq 9 - 5 \][/tex]
[tex]\[ 6 \geq 4 \][/tex]
- This is true.
- Therefore, the point [tex]\((4, 6)\)[/tex] lies within the region defined by the inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex].
By following these steps, you can determine that the inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex] defines a region on the coordinate plane including the boundary line and the area above it.
### Step-by-Step Solution:
1. Understanding the Inequality:
- The inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex] means that for any point [tex]\((x, y)\)[/tex] in the coordinate plane, the y-coordinate of the point should be greater than or equal to the expression [tex]\( \frac{9}{4} x - 5 \)[/tex].
2. Graphing the Boundary Line:
- First, let's graph the boundary line represented by the equation [tex]\( y = \frac{9}{4} x - 5 \)[/tex]. This is a straight line with a slope of [tex]\(\frac{9}{4}\)[/tex] and a y-intercept of [tex]\(-5\)[/tex].
- Slope: [tex]\(\frac{9}{4}\)[/tex] tells us that for every increase of 4 units in the x-direction, [tex]\( y \)[/tex] increases by 9 units.
- Y-intercept: The line crosses the y-axis at [tex]\(-5\)[/tex] (i.e., the point [tex]\((0, -5)\)[/tex]).
3. Shading the Region:
- The inequality symbol [tex]\( \geq \)[/tex] indicates that the region of interest includes the line itself (since [tex]\( y \)[/tex] can be equal to [tex]\( \frac{9}{4} x - 5 \)[/tex]), as well as the region above this line.
- To shade the correct region, choose a test point that is not on the boundary line, for instance, [tex]\((0, 0)\)[/tex].
- Substitute [tex]\((0, 0)\)[/tex] into the inequality: [tex]\( 0 \geq \frac{9}{4} \cdot 0 - 5 \)[/tex]
- Simplifies to: [tex]\( 0 \geq -5 \)[/tex], which is true.
- Hence, [tex]\((0, 0)\)[/tex] is in the region satisfying the inequality, so we shade the area above and including the line [tex]\( y = \frac{9}{4} x - 5 \)[/tex].
4. Verify a Specific Point:
- Let's verify if a specific point [tex]\((4, 6)\)[/tex] lies within the region defined by the inequality:
- Substitute [tex]\( x = 4\)[/tex] and [tex]\( y = 6\)[/tex] into the inequality:
[tex]\[ 6 \geq \frac{9}{4} \cdot 4 - 5 \][/tex]
- Simplify the right side:
[tex]\[ 6 \geq 9 - 5 \][/tex]
[tex]\[ 6 \geq 4 \][/tex]
- This is true.
- Therefore, the point [tex]\((4, 6)\)[/tex] lies within the region defined by the inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex].
By following these steps, you can determine that the inequality [tex]\( y \geq \frac{9}{4} x - 5 \)[/tex] defines a region on the coordinate plane including the boundary line and the area above it.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.