Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which statements are correct, let's proceed step-by-step:
1. Understanding the Original Statement:
- The original statement is: "A number is negative if and only if it is less than 0."
- In logical terms, this is [tex]\( p \leftrightarrow q \)[/tex], where:
- [tex]\( p \)[/tex]: A number is negative.
- [tex]\( q \)[/tex]: A number is less than 0.
2. Finding the Inverse:
- The inverse of the statement [tex]\( p \leftrightarrow q \)[/tex] is [tex]\( \sim p \leftrightarrow \sim q \)[/tex].
- [tex]\( \sim p \)[/tex]: A number is not negative.
- [tex]\( \sim q \)[/tex]: A number is not less than 0.
- Hence, the inverse statement is: "A number is not negative if and only if it is not less than 0."
- This can be restated as: "A number is non-negative if and only if it is zero or positive."
3. Evaluating the Truth of the Inverse:
- To determine whether the inverse statement is true, let's examine the conditions:
- If a number is non-negative ([tex]\(\sim p\)[/tex]), it must be either 0 or positive ([tex]\(\sim q\)[/tex]). This is true.
- If a number is zero or positive ([tex]\(\sim q\)[/tex]), it must be non-negative ([tex]\(\sim p\)[/tex]). This is also true.
Therefore, the inverse statement [tex]\( \sim p \leftrightarrow \sim q \)[/tex] is always true.
4. Matching the Correct Answers:
- "The inverse of the statement is true."
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
Therefore, the correct answers to the given question are:
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
- The inverse of the statement is true.
1. Understanding the Original Statement:
- The original statement is: "A number is negative if and only if it is less than 0."
- In logical terms, this is [tex]\( p \leftrightarrow q \)[/tex], where:
- [tex]\( p \)[/tex]: A number is negative.
- [tex]\( q \)[/tex]: A number is less than 0.
2. Finding the Inverse:
- The inverse of the statement [tex]\( p \leftrightarrow q \)[/tex] is [tex]\( \sim p \leftrightarrow \sim q \)[/tex].
- [tex]\( \sim p \)[/tex]: A number is not negative.
- [tex]\( \sim q \)[/tex]: A number is not less than 0.
- Hence, the inverse statement is: "A number is not negative if and only if it is not less than 0."
- This can be restated as: "A number is non-negative if and only if it is zero or positive."
3. Evaluating the Truth of the Inverse:
- To determine whether the inverse statement is true, let's examine the conditions:
- If a number is non-negative ([tex]\(\sim p\)[/tex]), it must be either 0 or positive ([tex]\(\sim q\)[/tex]). This is true.
- If a number is zero or positive ([tex]\(\sim q\)[/tex]), it must be non-negative ([tex]\(\sim p\)[/tex]). This is also true.
Therefore, the inverse statement [tex]\( \sim p \leftrightarrow \sim q \)[/tex] is always true.
4. Matching the Correct Answers:
- "The inverse of the statement is true."
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
Therefore, the correct answers to the given question are:
- [tex]\( \sim p \leftrightarrow \sim q \)[/tex]
- The inverse of the statement is true.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.