Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given equations represent concentric circles, we need to focus on identifying circles that share the same center. Here is a step-by-step solution:
1. Identify the Circle's Equations:
- Each equation given can be represented in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], after some manipulation.
2. Group the Equations Based on Similar Coefficients:
- Since the equations are in the form [tex]\(Ax^2 + Ay^2 + Dx + Ey + F = 0\)[/tex], we will compare the transformed forms to find equations that share centers, [tex]\((h, k)\)[/tex].
3. Equation Pairs:
- First Pair:
- [tex]\(3x^2 + 3y^2 - 18x + 6y + 6 = 0\)[/tex]
- [tex]\(x^2 + y^2 - 6x + 2y + 8 = 0\)[/tex]
- Transform the first equation to the standard form:
- Divide by 3: [tex]\(x^2 + y^2 - 6x + 2y + 2 = 0\)[/tex]
- Compare [tex]\((h, k)\)[/tex]:
- Both equations have the same center [tex]\((h, k) = (3, -1)\)[/tex].
- Second Pair:
- [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex]
- [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]
- For [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex]:
- Divide by 4: [tex]\(x^2 + y^2 + 2x - 10y - 41 = 0\)[/tex]
- For [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]:
- Divide by 5: [tex]\(x^2 + y^2 + 2x - 10y - 40 = 0\)[/tex]
- Both have the same center [tex]\((h, k) = (-1, 5)\)[/tex].
- Third Pair:
- [tex]\(x^2 + y^2 + 2x + 8y - 40 = 0\)[/tex]
- [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]
- For [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]:
- Divide by 2: [tex]\(x^2 + y^2 + 2x + 8y - 5 = 0\)[/tex]
- Both have the same center [tex]\((h, k) = (-1, -4)\)[/tex].
4. Final Pairs of Concentric Circles:
- [tex]\((3x^2 + 3y^2 - 18x + 6y + 6 = 0,\; x^2 + y^2 - 6x + 2y + 8 = 0)\)[/tex]
- [tex]\((4x^2 + 4y^2 + 8x - 40y - 164 = 0,\; 5x^2 + 5y^2 + 10x - 50y - 200 = 0)\)[/tex]
- [tex]\((x^2 + y^2 + 2x + 8y - 40 = 0,\; 2x^2 + 2y^2 + 4x + 16y - 10 = 0)\)[/tex]
Thus, the concentric circle pairs should be matched as follows:
- [tex]\(3x^2 + 3y^2 - 18x + 6y + 6 = 0\)[/tex] with [tex]\(x^2 + y^2 - 6x + 2y + 8 = 0\)[/tex]
- [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex] with [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]
- [tex]\(x^2 + y^2 + 2x + 8y - 40 = 0\)[/tex] with [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]
1. Identify the Circle's Equations:
- Each equation given can be represented in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], after some manipulation.
2. Group the Equations Based on Similar Coefficients:
- Since the equations are in the form [tex]\(Ax^2 + Ay^2 + Dx + Ey + F = 0\)[/tex], we will compare the transformed forms to find equations that share centers, [tex]\((h, k)\)[/tex].
3. Equation Pairs:
- First Pair:
- [tex]\(3x^2 + 3y^2 - 18x + 6y + 6 = 0\)[/tex]
- [tex]\(x^2 + y^2 - 6x + 2y + 8 = 0\)[/tex]
- Transform the first equation to the standard form:
- Divide by 3: [tex]\(x^2 + y^2 - 6x + 2y + 2 = 0\)[/tex]
- Compare [tex]\((h, k)\)[/tex]:
- Both equations have the same center [tex]\((h, k) = (3, -1)\)[/tex].
- Second Pair:
- [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex]
- [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]
- For [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex]:
- Divide by 4: [tex]\(x^2 + y^2 + 2x - 10y - 41 = 0\)[/tex]
- For [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]:
- Divide by 5: [tex]\(x^2 + y^2 + 2x - 10y - 40 = 0\)[/tex]
- Both have the same center [tex]\((h, k) = (-1, 5)\)[/tex].
- Third Pair:
- [tex]\(x^2 + y^2 + 2x + 8y - 40 = 0\)[/tex]
- [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]
- For [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]:
- Divide by 2: [tex]\(x^2 + y^2 + 2x + 8y - 5 = 0\)[/tex]
- Both have the same center [tex]\((h, k) = (-1, -4)\)[/tex].
4. Final Pairs of Concentric Circles:
- [tex]\((3x^2 + 3y^2 - 18x + 6y + 6 = 0,\; x^2 + y^2 - 6x + 2y + 8 = 0)\)[/tex]
- [tex]\((4x^2 + 4y^2 + 8x - 40y - 164 = 0,\; 5x^2 + 5y^2 + 10x - 50y - 200 = 0)\)[/tex]
- [tex]\((x^2 + y^2 + 2x + 8y - 40 = 0,\; 2x^2 + 2y^2 + 4x + 16y - 10 = 0)\)[/tex]
Thus, the concentric circle pairs should be matched as follows:
- [tex]\(3x^2 + 3y^2 - 18x + 6y + 6 = 0\)[/tex] with [tex]\(x^2 + y^2 - 6x + 2y + 8 = 0\)[/tex]
- [tex]\(4x^2 + 4y^2 + 8x - 40y - 164 = 0\)[/tex] with [tex]\(5x^2 + 5y^2 + 10x - 50y - 200 = 0\)[/tex]
- [tex]\(x^2 + y^2 + 2x + 8y - 40 = 0\)[/tex] with [tex]\(2x^2 + 2y^2 + 4x + 16y - 10 = 0\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.