At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To convert the general form of the equation of a circle to its standard form, follow these steps:
1. Start with the given equation:
[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]
2. Divide every term by 3 to simplify the equation:
[tex]\[ x^2 + y^2 + 10x - 8y - 4 = 0 \][/tex]
3. Rewrite the equation grouping the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms together:
[tex]\[ x^2 + 10x + y^2 - 8y = 4 \][/tex]
4. Complete the square for the [tex]\( x \)[/tex] terms:
[tex]\[ x^2 + 10x = (x + 5)^2 - 25 \][/tex]
5. Complete the square for the [tex]\( y \)[/tex] terms:
[tex]\[ y^2 - 8y = (y - 4)^2 - 16 \][/tex]
6. Substitute these completed squares back into the equation:
[tex]\[ (x + 5)^2 - 25 + (y - 4)^2 - 16 = 4 \][/tex]
7. Simplify the equation by combining constants:
[tex]\[ (x + 5)^2 + (y - 4)^2 - 41 = 4 \][/tex]
8. Add 41 to both sides to isolate the perfect squares on the left-hand side:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
The standard form of the equation for the given circle is:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
So in the formatting desired,
[tex]\[ (x + 5)^2 + (y + (-4))^2 = 45 \][/tex]
Therefore:
[tex]\[ (x+5)^2 + (y-4)^2 = 45 \][/tex]
1. Start with the given equation:
[tex]\[ 3x^2 + 3y^2 + 30x - 24y - 12 = 0 \][/tex]
2. Divide every term by 3 to simplify the equation:
[tex]\[ x^2 + y^2 + 10x - 8y - 4 = 0 \][/tex]
3. Rewrite the equation grouping the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] terms together:
[tex]\[ x^2 + 10x + y^2 - 8y = 4 \][/tex]
4. Complete the square for the [tex]\( x \)[/tex] terms:
[tex]\[ x^2 + 10x = (x + 5)^2 - 25 \][/tex]
5. Complete the square for the [tex]\( y \)[/tex] terms:
[tex]\[ y^2 - 8y = (y - 4)^2 - 16 \][/tex]
6. Substitute these completed squares back into the equation:
[tex]\[ (x + 5)^2 - 25 + (y - 4)^2 - 16 = 4 \][/tex]
7. Simplify the equation by combining constants:
[tex]\[ (x + 5)^2 + (y - 4)^2 - 41 = 4 \][/tex]
8. Add 41 to both sides to isolate the perfect squares on the left-hand side:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
The standard form of the equation for the given circle is:
[tex]\[ (x + 5)^2 + (y - 4)^2 = 45 \][/tex]
So in the formatting desired,
[tex]\[ (x + 5)^2 + (y + (-4))^2 = 45 \][/tex]
Therefore:
[tex]\[ (x+5)^2 + (y-4)^2 = 45 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.