At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To calculate the theoretical yield of carbonic acid ( [tex]\( H_2CO_3 \)[/tex] ) formed when [tex]\( 495 \)[/tex] milliliters of carbon dioxide ([tex]\( CO_2 \)[/tex]) reacts with excess water under the given conditions, we can use the Ideal Gas Law, [tex]\( PV = nRT \)[/tex]. Let's walk through the necessary steps:
1. Convert the Volume to Liters:
Given volume of [tex]\( CO_2 \)[/tex] is [tex]\( 495 \)[/tex] milliliters.
[tex]\[ 495 \text{ milliliters} = 495 \times \frac{1 \text{ liter}}{1000 \text{ milliliters}} = 0.495 \text{ liters} \][/tex]
2. Convert the Temperature to Kelvin:
Given temperature is [tex]\( 25^{\circ} C \)[/tex].
[tex]\[ 25^{\circ} C + 273.15 = 298.15 \text{ K} \][/tex]
3. Use the Ideal Gas Law to Find the Number of Moles ([tex]\( n \)[/tex]) of [tex]\( CO_2 \)[/tex]:
Given pressure [tex]\( P = 101.3 \)[/tex] kilopascals,
Ideal Gas constant [tex]\( R = 8.314 \frac{L kPa}{mol K} \)[/tex],
Temperature [tex]\( T = 298.15 \text{ K} \)[/tex],
Volume [tex]\( V = 0.495 \text{ liters} \)[/tex].
Rearranging the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the given values:
[tex]\[ n = \frac{101.3 \text{ kPa} \times 0.495 \text{ liters}}{8.314 \frac{L kPa}{mol K} \times 298.15 \text{ K}} \][/tex]
[tex]\[ n \approx 0.02023 \text{ moles} \][/tex]
4. Calculate the Theoretical Yield of [tex]\( H_2CO_3 \)[/tex]:
According to the balanced chemical equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]
1 mole of [tex]\( CO_2 \)[/tex] produces 1 mole of [tex]\( H_2CO_3 \)[/tex]. Thus, moles of [tex]\( H_2CO_3 \)[/tex] formed will be the same as moles of [tex]\( CO_2 \)[/tex], which is [tex]\( 0.02023 \text{ moles} \)[/tex].
5. Calculate the Mass of [tex]\( H_2CO_3 \)[/tex]:
Molar mass of [tex]\( H_2CO_3 \)[/tex] is calculated as follows:
[tex]\[ Molar \, mass \, of \, H_2CO_3 = 2 \times 1 (H) + 12 (C) + 3 \times 16 (O) = 62 \, g/mol \][/tex]
Mass of [tex]\( H_2CO_3 \)[/tex] formed:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.02023 \text{ moles} \times 62 \, \text{g/mol} \approx 1.254 \, \text{g} \][/tex]
To match the multiple-choice answers:
Option A: [tex]\( 0.889 \, g \)[/tex]
Option B: [tex]\( 1.10 \, g \)[/tex]
Option C: [tex]\( 1.27 \, g \)[/tex]
Option D: [tex]\( 2.029 \, g \)[/tex]
Since [tex]\( 1.254 \)[/tex] grams is closest to [tex]\( 1.27 \)[/tex], the correct answer is:
[tex]\[ \boxed{1.27 \, g} \][/tex]
1. Convert the Volume to Liters:
Given volume of [tex]\( CO_2 \)[/tex] is [tex]\( 495 \)[/tex] milliliters.
[tex]\[ 495 \text{ milliliters} = 495 \times \frac{1 \text{ liter}}{1000 \text{ milliliters}} = 0.495 \text{ liters} \][/tex]
2. Convert the Temperature to Kelvin:
Given temperature is [tex]\( 25^{\circ} C \)[/tex].
[tex]\[ 25^{\circ} C + 273.15 = 298.15 \text{ K} \][/tex]
3. Use the Ideal Gas Law to Find the Number of Moles ([tex]\( n \)[/tex]) of [tex]\( CO_2 \)[/tex]:
Given pressure [tex]\( P = 101.3 \)[/tex] kilopascals,
Ideal Gas constant [tex]\( R = 8.314 \frac{L kPa}{mol K} \)[/tex],
Temperature [tex]\( T = 298.15 \text{ K} \)[/tex],
Volume [tex]\( V = 0.495 \text{ liters} \)[/tex].
Rearranging the Ideal Gas Law to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]
Substitute the given values:
[tex]\[ n = \frac{101.3 \text{ kPa} \times 0.495 \text{ liters}}{8.314 \frac{L kPa}{mol K} \times 298.15 \text{ K}} \][/tex]
[tex]\[ n \approx 0.02023 \text{ moles} \][/tex]
4. Calculate the Theoretical Yield of [tex]\( H_2CO_3 \)[/tex]:
According to the balanced chemical equation:
[tex]\[ CO_2 + H_2O \rightarrow H_2CO_3 \][/tex]
1 mole of [tex]\( CO_2 \)[/tex] produces 1 mole of [tex]\( H_2CO_3 \)[/tex]. Thus, moles of [tex]\( H_2CO_3 \)[/tex] formed will be the same as moles of [tex]\( CO_2 \)[/tex], which is [tex]\( 0.02023 \text{ moles} \)[/tex].
5. Calculate the Mass of [tex]\( H_2CO_3 \)[/tex]:
Molar mass of [tex]\( H_2CO_3 \)[/tex] is calculated as follows:
[tex]\[ Molar \, mass \, of \, H_2CO_3 = 2 \times 1 (H) + 12 (C) + 3 \times 16 (O) = 62 \, g/mol \][/tex]
Mass of [tex]\( H_2CO_3 \)[/tex] formed:
[tex]\[ \text{Mass} = \text{moles} \times \text{molar mass} \][/tex]
[tex]\[ \text{Mass} = 0.02023 \text{ moles} \times 62 \, \text{g/mol} \approx 1.254 \, \text{g} \][/tex]
To match the multiple-choice answers:
Option A: [tex]\( 0.889 \, g \)[/tex]
Option B: [tex]\( 1.10 \, g \)[/tex]
Option C: [tex]\( 1.27 \, g \)[/tex]
Option D: [tex]\( 2.029 \, g \)[/tex]
Since [tex]\( 1.254 \)[/tex] grams is closest to [tex]\( 1.27 \)[/tex], the correct answer is:
[tex]\[ \boxed{1.27 \, g} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.