Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Given the equation of the circle:
[tex]\[ (x - 11)^2 + (y - 15)^2 = 100 \][/tex]
We need to determine the center and the radius of the circle.
### Step-by-Step Solution:
1. Identify the general form of the circle's equation:
The general form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] is the radius.
2. Compare the given equation with the general form:
Looking at the given equation:
[tex]\[ (x - 11)^2 + (y - 15)^2 = 100 \][/tex]
and comparing it with the general form, we can identify the following:
- [tex]\(h = 11\)[/tex]
- [tex]\(k = 15\)[/tex]
So, the center of the circle, [tex]\((h, k)\)[/tex], is [tex]\((11, 15)\)[/tex].
3. Determine the radius:
In the general form of the equation, [tex]\(r^2\)[/tex] corresponds to the right-hand side of the equation.
[tex]\[ r^2 = 100 \][/tex]
To find the radius, [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{100} = 10 \][/tex]
### Final Answer:
- The center has coordinates [tex]\((11, 15)\)[/tex].
- The radius is [tex]\(10\)[/tex] units long.
[tex]\[ (x - 11)^2 + (y - 15)^2 = 100 \][/tex]
We need to determine the center and the radius of the circle.
### Step-by-Step Solution:
1. Identify the general form of the circle's equation:
The general form of a circle's equation is:
[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the center of the circle and [tex]\(r\)[/tex] is the radius.
2. Compare the given equation with the general form:
Looking at the given equation:
[tex]\[ (x - 11)^2 + (y - 15)^2 = 100 \][/tex]
and comparing it with the general form, we can identify the following:
- [tex]\(h = 11\)[/tex]
- [tex]\(k = 15\)[/tex]
So, the center of the circle, [tex]\((h, k)\)[/tex], is [tex]\((11, 15)\)[/tex].
3. Determine the radius:
In the general form of the equation, [tex]\(r^2\)[/tex] corresponds to the right-hand side of the equation.
[tex]\[ r^2 = 100 \][/tex]
To find the radius, [tex]\(r\)[/tex], we take the square root of both sides:
[tex]\[ r = \sqrt{100} = 10 \][/tex]
### Final Answer:
- The center has coordinates [tex]\((11, 15)\)[/tex].
- The radius is [tex]\(10\)[/tex] units long.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.