Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the work done on the runner as they increase their speed, we need to calculate the change in their kinetic energy.
Kinetic energy (KE) is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
### Step-by-Step Solution:
1. Calculate the initial kinetic energy:
[tex]\[ \text{Initial KE} = \frac{1}{2} \times 60.0 \, \text{kg} \times (6.00 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{Initial KE} = \frac{1}{2} \times 60.0 \times 36 \][/tex]
[tex]\[ \text{Initial KE} = 30.0 \times 36 \][/tex]
[tex]\[ \text{Initial KE} = 1080.0 \, \text{J} \][/tex]
2. Calculate the final kinetic energy:
[tex]\[ \text{Final KE} = \frac{1}{2} \times 60.0 \, \text{kg} \times (9.00 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{Final KE} = \frac{1}{2} \times 60.0 \times 81 \][/tex]
[tex]\[ \text{Final KE} = 30.0 \times 81 \][/tex]
[tex]\[ \text{Final KE} = 2430.0 \, \text{J} \][/tex]
3. Calculate the work done:
The work done is equal to the change in kinetic energy.
[tex]\[ \text{Work Done} = \text{Final KE} - \text{Initial KE} \][/tex]
[tex]\[ \text{Work Done} = 2430.0 \, \text{J} - 1080.0 \, \text{J} \][/tex]
[tex]\[ \text{Work Done} = 1350.0 \, \text{J} \][/tex]
Thus, the work done on the runner as they speed up from [tex]\( 6.00 \, \text{m/s} \)[/tex] to [tex]\( 9.00 \, \text{m/s} \)[/tex] is [tex]\( 1350 \, \text{J} \)[/tex].
Therefore, the correct choice is:
[tex]\[ \boxed{1350 \, \text{J}} \][/tex]
Kinetic energy (KE) is given by the formula:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where [tex]\( m \)[/tex] is the mass and [tex]\( v \)[/tex] is the velocity.
### Step-by-Step Solution:
1. Calculate the initial kinetic energy:
[tex]\[ \text{Initial KE} = \frac{1}{2} \times 60.0 \, \text{kg} \times (6.00 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{Initial KE} = \frac{1}{2} \times 60.0 \times 36 \][/tex]
[tex]\[ \text{Initial KE} = 30.0 \times 36 \][/tex]
[tex]\[ \text{Initial KE} = 1080.0 \, \text{J} \][/tex]
2. Calculate the final kinetic energy:
[tex]\[ \text{Final KE} = \frac{1}{2} \times 60.0 \, \text{kg} \times (9.00 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{Final KE} = \frac{1}{2} \times 60.0 \times 81 \][/tex]
[tex]\[ \text{Final KE} = 30.0 \times 81 \][/tex]
[tex]\[ \text{Final KE} = 2430.0 \, \text{J} \][/tex]
3. Calculate the work done:
The work done is equal to the change in kinetic energy.
[tex]\[ \text{Work Done} = \text{Final KE} - \text{Initial KE} \][/tex]
[tex]\[ \text{Work Done} = 2430.0 \, \text{J} - 1080.0 \, \text{J} \][/tex]
[tex]\[ \text{Work Done} = 1350.0 \, \text{J} \][/tex]
Thus, the work done on the runner as they speed up from [tex]\( 6.00 \, \text{m/s} \)[/tex] to [tex]\( 9.00 \, \text{m/s} \)[/tex] is [tex]\( 1350 \, \text{J} \)[/tex].
Therefore, the correct choice is:
[tex]\[ \boxed{1350 \, \text{J}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.