Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the expression [tex]\((1 + \sqrt{3})^2\)[/tex] and express it in the form [tex]\(a + b\sqrt{3}\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are integers, we follow these steps:
1. Expand the Expression:
Given expression: [tex]\((1 + \sqrt{3})^2\)[/tex]
To expand the expression, we use the formula [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex].
Here, [tex]\(a = 1\)[/tex] and [tex]\(b = \sqrt{3}\)[/tex].
2. Calculate Each Component:
- [tex]\(a^2\)[/tex]:
[tex]\[ 1^2 = 1 \][/tex]
- [tex]\(2ab\)[/tex]:
[tex]\[ 2 \cdot 1 \cdot \sqrt{3} = 2\sqrt{3} \][/tex]
- [tex]\(b^2\)[/tex]:
[tex]\[ (\sqrt{3})^2 = 3 \][/tex]
3. Combine the Results:
Add the computed values:
[tex]\[ a^2 + 2ab + b^2 = 1 + 2\sqrt{3} + 3 \][/tex]
Grouping the rational and irrational parts:
[tex]\[ (1 + 3) + 2\sqrt{3} = 4 + 2\sqrt{3} \][/tex]
4. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
From the combined result, we can see that:
[tex]\(a = 4\)[/tex] (the coefficient of the rational part)
[tex]\(b = 2\)[/tex] (the coefficient of [tex]\(\sqrt{3}\)[/tex])
Therefore, the values are:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 2 \][/tex]
1. Expand the Expression:
Given expression: [tex]\((1 + \sqrt{3})^2\)[/tex]
To expand the expression, we use the formula [tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex].
Here, [tex]\(a = 1\)[/tex] and [tex]\(b = \sqrt{3}\)[/tex].
2. Calculate Each Component:
- [tex]\(a^2\)[/tex]:
[tex]\[ 1^2 = 1 \][/tex]
- [tex]\(2ab\)[/tex]:
[tex]\[ 2 \cdot 1 \cdot \sqrt{3} = 2\sqrt{3} \][/tex]
- [tex]\(b^2\)[/tex]:
[tex]\[ (\sqrt{3})^2 = 3 \][/tex]
3. Combine the Results:
Add the computed values:
[tex]\[ a^2 + 2ab + b^2 = 1 + 2\sqrt{3} + 3 \][/tex]
Grouping the rational and irrational parts:
[tex]\[ (1 + 3) + 2\sqrt{3} = 4 + 2\sqrt{3} \][/tex]
4. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
From the combined result, we can see that:
[tex]\(a = 4\)[/tex] (the coefficient of the rational part)
[tex]\(b = 2\)[/tex] (the coefficient of [tex]\(\sqrt{3}\)[/tex])
Therefore, the values are:
[tex]\[ a = 4 \][/tex]
[tex]\[ b = 2 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.