Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the conclusion about the null hypothesis, we need to compare the computed test statistic to the critical value.
1. State the given information:
- The test statistic value is [tex]\(\chi^2 = 0.579\)[/tex].
- The critical value is [tex]\(\chi^2 = 5.991\)[/tex].
2. Formulate the decision rule:
- The null hypothesis ([tex]\(H_0\)[/tex]) will be rejected if the test statistic is greater than or equal to the critical value.
- Conversely, if the test statistic is less than the critical value, we fail to reject the null hypothesis.
3. Compare the test statistic to the critical value:
[tex]\[ \chi^2 = 0.579 < 5.991 \][/tex]
4. Draw the conclusion:
Since the test statistic ([tex]\(0.579\)[/tex]) is less than the critical value ([tex]\(5.991\)[/tex]), we fail to reject the null hypothesis ([tex]\(H_0\)[/tex]). This means that there is not sufficient evidence to conclude that college graduation status and cola preference are dependent.
Thus, we conclude:
A. Fail to reject the null hypothesis. There is not sufficient evidence to warrant rejection of the claim that college graduation status and cola preference are independent.
1. State the given information:
- The test statistic value is [tex]\(\chi^2 = 0.579\)[/tex].
- The critical value is [tex]\(\chi^2 = 5.991\)[/tex].
2. Formulate the decision rule:
- The null hypothesis ([tex]\(H_0\)[/tex]) will be rejected if the test statistic is greater than or equal to the critical value.
- Conversely, if the test statistic is less than the critical value, we fail to reject the null hypothesis.
3. Compare the test statistic to the critical value:
[tex]\[ \chi^2 = 0.579 < 5.991 \][/tex]
4. Draw the conclusion:
Since the test statistic ([tex]\(0.579\)[/tex]) is less than the critical value ([tex]\(5.991\)[/tex]), we fail to reject the null hypothesis ([tex]\(H_0\)[/tex]). This means that there is not sufficient evidence to conclude that college graduation status and cola preference are dependent.
Thus, we conclude:
A. Fail to reject the null hypothesis. There is not sufficient evidence to warrant rejection of the claim that college graduation status and cola preference are independent.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.