At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's go through the detailed step-by-step solution to find the enthalpy of combustion of 1 mole of [tex]\( C_6H_6 \)[/tex] (benzene) when it completely reacts with oxygen.
Given the balanced chemical equation for the combustion of benzene:
[tex]\[ 2 C_6H_6(g) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g) \][/tex]
We are also given the standard enthalpies of formation ([tex]\(\Delta H_f^\circ\)[/tex]) of the compounds involved:
- [tex]\(C_6H_6(g)\)[/tex]: [tex]\( \Delta H_f^\circ = 82.90 \, \text{kJ/mol} \)[/tex]
- [tex]\(CO_2(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -393.50 \, \text{kJ/mol} \)[/tex]
- [tex]\(H_2O(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -241.82 \, \text{kJ/mol} \)[/tex]
The enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated using the enthalpies of formation of the products and reactants.
First, calculate the total enthalpy of formation of the reactants and products:
1. Reactants:
- For [tex]\( C_6H_6(g) \)[/tex]:
[tex]\[ \text{Total} = 2 \times 82.90 \, \text{kJ/mol} \][/tex]
2. Products:
- For [tex]\( CO_2(g) \)[/tex]:
[tex]\[ \text{Total} = 12 \times (-393.50) \, \text{kJ/mol} \][/tex]
- For [tex]\( H_2O(g) \)[/tex]:
[tex]\[ \text{Total} = 6 \times (-241.82) \, \text{kJ/mol} \][/tex]
Now sum up these values to calculate the total enthalpy for the reactants and products:
- Total enthalpy of reactants:
[tex]\[ 2 \times 82.90 = 165.80 \, \text{kJ} \][/tex]
- Total enthalpy of products:
[tex]\[ (12 \times -393.50) + (6 \times -241.82) = -4722.00 - 1450.92 = -6172.92 \, \text{kJ} \][/tex]
The enthalpy change of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) can be calculated using:
[tex]\[ \Delta H_{\text{reaction}} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -6172.92 \, \text{kJ} - 165.80 \, \text{kJ} = -6338.72 \, \text{kJ} \][/tex]
This is the enthalpy change for the combustion of 2 moles of benzene. Therefore, to find the enthalpy change for 1 mole of benzene, we divide this result by 2:
[tex]\[ \Delta H_{\text{combustion}} = \frac{\Delta H_{\text{reaction}}}{2} = \frac{-6338.72 \, \text{kJ}}{2} = -3169.36 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy of combustion for 1 mole of [tex]\( C_6H_6 \)[/tex] is:
[tex]\[ -3169.36 \, \text{kJ/mol} \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ \boxed{-3169 \, \text{kJ/mol}} \][/tex]
This indicates that when 1 mole of benzene completely reacts with oxygen, the enthalpy of combustion is approximately [tex]\( -3169 \, \text{kJ/mol} \)[/tex].
Given the balanced chemical equation for the combustion of benzene:
[tex]\[ 2 C_6H_6(g) + 15 O_2(g) \rightarrow 12 CO_2(g) + 6 H_2O(g) \][/tex]
We are also given the standard enthalpies of formation ([tex]\(\Delta H_f^\circ\)[/tex]) of the compounds involved:
- [tex]\(C_6H_6(g)\)[/tex]: [tex]\( \Delta H_f^\circ = 82.90 \, \text{kJ/mol} \)[/tex]
- [tex]\(CO_2(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -393.50 \, \text{kJ/mol} \)[/tex]
- [tex]\(H_2O(g)\)[/tex]: [tex]\( \Delta H_f^\circ = -241.82 \, \text{kJ/mol} \)[/tex]
The enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is calculated using the enthalpies of formation of the products and reactants.
First, calculate the total enthalpy of formation of the reactants and products:
1. Reactants:
- For [tex]\( C_6H_6(g) \)[/tex]:
[tex]\[ \text{Total} = 2 \times 82.90 \, \text{kJ/mol} \][/tex]
2. Products:
- For [tex]\( CO_2(g) \)[/tex]:
[tex]\[ \text{Total} = 12 \times (-393.50) \, \text{kJ/mol} \][/tex]
- For [tex]\( H_2O(g) \)[/tex]:
[tex]\[ \text{Total} = 6 \times (-241.82) \, \text{kJ/mol} \][/tex]
Now sum up these values to calculate the total enthalpy for the reactants and products:
- Total enthalpy of reactants:
[tex]\[ 2 \times 82.90 = 165.80 \, \text{kJ} \][/tex]
- Total enthalpy of products:
[tex]\[ (12 \times -393.50) + (6 \times -241.82) = -4722.00 - 1450.92 = -6172.92 \, \text{kJ} \][/tex]
The enthalpy change of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) can be calculated using:
[tex]\[ \Delta H_{\text{reaction}} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -6172.92 \, \text{kJ} - 165.80 \, \text{kJ} = -6338.72 \, \text{kJ} \][/tex]
This is the enthalpy change for the combustion of 2 moles of benzene. Therefore, to find the enthalpy change for 1 mole of benzene, we divide this result by 2:
[tex]\[ \Delta H_{\text{combustion}} = \frac{\Delta H_{\text{reaction}}}{2} = \frac{-6338.72 \, \text{kJ}}{2} = -3169.36 \, \text{kJ/mol} \][/tex]
Thus, the enthalpy of combustion for 1 mole of [tex]\( C_6H_6 \)[/tex] is:
[tex]\[ -3169.36 \, \text{kJ/mol} \][/tex]
Therefore, the correct answer from the given options is:
[tex]\[ \boxed{-3169 \, \text{kJ/mol}} \][/tex]
This indicates that when 1 mole of benzene completely reacts with oxygen, the enthalpy of combustion is approximately [tex]\( -3169 \, \text{kJ/mol} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.