Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the classification of a triangle with side lengths [tex]\(6 \text{ cm}\)[/tex], [tex]\(10 \text{ cm}\)[/tex], and [tex]\(12 \text{ cm}\)[/tex], follow these steps:
1. Calculate the squares of the side lengths:
- For the first side: [tex]\(6^2 = 36\)[/tex]
- For the second side: [tex]\(10^2 = 100\)[/tex]
- For the third side: [tex]\(12^2 = 144\)[/tex]
2. Check the sums of the squares:
- Calculate [tex]\(6^2 + 10^2 = 36 + 100 = 136\)[/tex]
- Compare this sum to [tex]\(12^2 = 144\)[/tex]
3. Determine the triangle type based on the comparison:
- Notice that [tex]\(36 + 100 = 136\)[/tex] and [tex]\(136 < 144\)[/tex].
4. Conclusion:
- The inequality [tex]\(6^2 + 10^2 < 12^2\)[/tex] indicates that the triangle is obtuse (since in an obtuse triangle, the square of one side is greater than the sum of the squares of the other two sides).
Therefore, the classification that best represents the triangle is:
Obtuse, because [tex]\(6^2 + 10^2 < 12^2\)[/tex].
1. Calculate the squares of the side lengths:
- For the first side: [tex]\(6^2 = 36\)[/tex]
- For the second side: [tex]\(10^2 = 100\)[/tex]
- For the third side: [tex]\(12^2 = 144\)[/tex]
2. Check the sums of the squares:
- Calculate [tex]\(6^2 + 10^2 = 36 + 100 = 136\)[/tex]
- Compare this sum to [tex]\(12^2 = 144\)[/tex]
3. Determine the triangle type based on the comparison:
- Notice that [tex]\(36 + 100 = 136\)[/tex] and [tex]\(136 < 144\)[/tex].
4. Conclusion:
- The inequality [tex]\(6^2 + 10^2 < 12^2\)[/tex] indicates that the triangle is obtuse (since in an obtuse triangle, the square of one side is greater than the sum of the squares of the other two sides).
Therefore, the classification that best represents the triangle is:
Obtuse, because [tex]\(6^2 + 10^2 < 12^2\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.