Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the number of girls and boys in the class, let's denote the number of girls as [tex]\( G \)[/tex] and the number of boys as [tex]\( B \)[/tex]. According to the problem, the class has a total of 64 students, and the number of boys is [tex]\(\frac{3}{5}\)[/tex] of the number of girls.
We start by setting up the equation based on the given relationships:
1. The total number of students is 64:
[tex]\[ G + B = 64 \][/tex]
2. The number of boys is [tex]\(\frac{3}{5}\)[/tex] of the number of girls:
[tex]\[ B = \frac{3}{5}G \][/tex]
Next, substitute the expression for [tex]\( B \)[/tex] from the second equation into the first equation:
[tex]\[ G + \frac{3}{5}G = 64 \][/tex]
To combine the terms involving [tex]\( G \)[/tex], convert the fraction to a common denominator if necessary. Here, we can simply add the coefficients:
[tex]\[ \left(1 + \frac{3}{5}\right)G = 64 \][/tex]
Convert 1 to a fraction with a denominator of 5:
[tex]\[ \left(\frac{5}{5} + \frac{3}{5}\right)G = 64 \][/tex]
[tex]\[ \frac{8}{5}G = 64 \][/tex]
To solve for [tex]\( G \)[/tex], multiply both sides of the equation by the reciprocal of [tex]\(\frac{8}{5}\)[/tex]:
[tex]\[ G = 64 \times \frac{5}{8} \][/tex]
[tex]\[ G = 40 \][/tex]
Therefore, the number of girls [tex]\( G \)[/tex] is 40.
Next, we calculate the number of boys [tex]\( B \)[/tex] using the relationship [tex]\( B = \frac{3}{5}G \)[/tex]:
[tex]\[ B = \frac{3}{5} \times 40 \][/tex]
[tex]\[ B = 24 \][/tex]
Therefore, the number of boys [tex]\( B \)[/tex] is 24.
In summary, the class consists of 40 girls and 24 boys.
We start by setting up the equation based on the given relationships:
1. The total number of students is 64:
[tex]\[ G + B = 64 \][/tex]
2. The number of boys is [tex]\(\frac{3}{5}\)[/tex] of the number of girls:
[tex]\[ B = \frac{3}{5}G \][/tex]
Next, substitute the expression for [tex]\( B \)[/tex] from the second equation into the first equation:
[tex]\[ G + \frac{3}{5}G = 64 \][/tex]
To combine the terms involving [tex]\( G \)[/tex], convert the fraction to a common denominator if necessary. Here, we can simply add the coefficients:
[tex]\[ \left(1 + \frac{3}{5}\right)G = 64 \][/tex]
Convert 1 to a fraction with a denominator of 5:
[tex]\[ \left(\frac{5}{5} + \frac{3}{5}\right)G = 64 \][/tex]
[tex]\[ \frac{8}{5}G = 64 \][/tex]
To solve for [tex]\( G \)[/tex], multiply both sides of the equation by the reciprocal of [tex]\(\frac{8}{5}\)[/tex]:
[tex]\[ G = 64 \times \frac{5}{8} \][/tex]
[tex]\[ G = 40 \][/tex]
Therefore, the number of girls [tex]\( G \)[/tex] is 40.
Next, we calculate the number of boys [tex]\( B \)[/tex] using the relationship [tex]\( B = \frac{3}{5}G \)[/tex]:
[tex]\[ B = \frac{3}{5} \times 40 \][/tex]
[tex]\[ B = 24 \][/tex]
Therefore, the number of boys [tex]\( B \)[/tex] is 24.
In summary, the class consists of 40 girls and 24 boys.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.