Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the volume of [tex]\( \text{CO}_2 \)[/tex] gas produced at standard temperature and pressure (STP) from the decomposition of 3.25 moles of [tex]\( \text{CaCO}_3 \)[/tex], follow these steps:
1. Write the balanced chemical equation:
[tex]\[ \text{CaCO}_3 (s) \rightarrow \text{CaO} (s) + \text{CO}_2 (g) \][/tex]
2. Identify the stoichiometric relationship:
From the balanced equation, 1 mole of [tex]\( \text{CaCO}_3 \)[/tex] produces 1 mole of [tex]\( \text{CO}_2 \)[/tex].
3. Determine the amount of [tex]\( \text{CO}_2 \)[/tex] produced:
Given that 3.25 moles of [tex]\( \text{CaCO}_3 \)[/tex] decompose, this will produce 3.25 moles of [tex]\( \text{CO}_2 \)[/tex], as per the 1:1 molar ratio.
4. Use the molar volume of a gas at STP:
At STP (standard temperature and pressure), 1 mole of any gas occupies 22.4 liters.
5. Calculate the volume of [tex]\( \text{CO}_2 \)[/tex] gas produced:
[tex]\[ \text{Volume of } \text{CO}_2 = \text{moles of } \text{CO}_2 \times \text{volume per mole at STP} \][/tex]
Substituting the values:
[tex]\[ \text{Volume of } \text{CO}_2 = 3.25 \text{ moles} \times 22.4 \text{ L/mole} \][/tex]
6. Compute the result:
[tex]\[ \text{Volume of } \text{CO}_2 = 3.25 \times 22.4 = 72.8 \text{ liters} \][/tex]
Therefore, the volume of [tex]\( \text{CO}_2 \)[/tex] gas produced at STP is [tex]\( 72.8 \)[/tex] liters.
1. Write the balanced chemical equation:
[tex]\[ \text{CaCO}_3 (s) \rightarrow \text{CaO} (s) + \text{CO}_2 (g) \][/tex]
2. Identify the stoichiometric relationship:
From the balanced equation, 1 mole of [tex]\( \text{CaCO}_3 \)[/tex] produces 1 mole of [tex]\( \text{CO}_2 \)[/tex].
3. Determine the amount of [tex]\( \text{CO}_2 \)[/tex] produced:
Given that 3.25 moles of [tex]\( \text{CaCO}_3 \)[/tex] decompose, this will produce 3.25 moles of [tex]\( \text{CO}_2 \)[/tex], as per the 1:1 molar ratio.
4. Use the molar volume of a gas at STP:
At STP (standard temperature and pressure), 1 mole of any gas occupies 22.4 liters.
5. Calculate the volume of [tex]\( \text{CO}_2 \)[/tex] gas produced:
[tex]\[ \text{Volume of } \text{CO}_2 = \text{moles of } \text{CO}_2 \times \text{volume per mole at STP} \][/tex]
Substituting the values:
[tex]\[ \text{Volume of } \text{CO}_2 = 3.25 \text{ moles} \times 22.4 \text{ L/mole} \][/tex]
6. Compute the result:
[tex]\[ \text{Volume of } \text{CO}_2 = 3.25 \times 22.4 = 72.8 \text{ liters} \][/tex]
Therefore, the volume of [tex]\( \text{CO}_2 \)[/tex] gas produced at STP is [tex]\( 72.8 \)[/tex] liters.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.