Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's solve this step-by-step:
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
We have the balanced chemical equation:
[tex]\[ 2 \, \text{C}_2\text{H}_2 (\text{g}) + 5 \, \text{O}_2 (\text{g}) \rightarrow 4 \, \text{CO}_2 (\text{g}) + 2 \, \text{H}_2\text{O} (\text{g}) \][/tex]
We need to determine how many liters of [tex]\(\text{C}_2\text{H}_2\)[/tex] are required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex].
From the balanced equation, we know the volume ratios are as follows:
[tex]\[ 2 \, \text{L} \, \text{C}_2\text{H}_2 \text{ produces } 4 \, \text{L} \, \text{CO}_2 \][/tex]
We can set up the ratio of [tex]\(\text{C}_2\text{H}_2\)[/tex] to [tex]\(\text{CO}_2\)[/tex] from the equation:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} \][/tex]
Let [tex]\( x \)[/tex] be the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] needed to produce 8 liters of [tex]\(\text{CO}_2\)[/tex]:
[tex]\[ \frac{2 \, \text{L} \, \text{C}_2\text{H}_2}{4 \, \text{L} \, \text{CO}_2} = \frac{x \, \text{L} \, \text{C}_2\text{H}_2}{8 \, \text{L} \, \text{CO}_2} \][/tex]
To solve for [tex]\( x \)[/tex], we can cross-multiply:
[tex]\[ 2 \times 8 = 4 \times x \][/tex]
[tex]\[ 16 = 4x \][/tex]
Now, we divide both sides by 4 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]
Therefore, the volume of [tex]\(\text{C}_2\text{H}_2\)[/tex] required to produce 8 liters of [tex]\(\text{CO}_2\)[/tex] is [tex]\( 4 \)[/tex] liters.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.