Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's work through this step-by-step:
### Part (a):
To find the time it takes for the stone to fall 4.9 meters, we use the kinematic equation for objects in free fall:
[tex]\[ h = \frac{1}{2} g t^2 \][/tex]
where:
- [tex]\( h \)[/tex] is the height (4.9 meters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds.
Rearranging to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \sqrt{\frac{2h}{g}} \][/tex]
Substitute the known values:
[tex]\[ t = \sqrt{\frac{2 \cdot 4.9 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]
[tex]\[ t = \sqrt{\frac{9.8 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]
[tex]\[ t = \sqrt{1} \][/tex]
[tex]\[ t = 1 \, \text{s} \][/tex]
So, it takes [tex]\( 1 \)[/tex] second for the stone to fall 4.9 meters.
### Part (b):
Next, we want to find the velocity of the stone at the end of the fall. The velocity of an object falling from rest under gravity can be found using:
[tex]\[ v = g t \][/tex]
where:
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds (from part a, [tex]\( t = 1 \)[/tex] second).
Substitute the known values:
[tex]\[ v = 9.8 \, \text{m/s}^2 \cdot 1 \, \text{s} \][/tex]
[tex]\[ v = 9.8 \, \text{m/s} \][/tex]
So, the stone moves at [tex]\( 9.8 \, \text{m/s} \)[/tex] at the end of the fall.
### Part (c):
Finally, to determine the acceleration of the stone after 3 seconds, we recognize that the only force acting on the stone is gravity (assuming no air resistance). The acceleration due to gravity is constant.
Thus, the acceleration [tex]\( a \)[/tex] after any amount of time, including 3 seconds, remains:
[tex]\[ a = 9.8 \, \text{m/s}^2 \][/tex]
So, the acceleration of the stone after 3 seconds is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
### Summary:
(a) The time to fall 4.9 meters: [tex]\( 1 \)[/tex] second
(b) The velocity at the end of that fall: [tex]\( 9.8 \, \text{m/s} \)[/tex]
(c) The acceleration after 3 seconds: [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]
### Part (a):
To find the time it takes for the stone to fall 4.9 meters, we use the kinematic equation for objects in free fall:
[tex]\[ h = \frac{1}{2} g t^2 \][/tex]
where:
- [tex]\( h \)[/tex] is the height (4.9 meters),
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds.
Rearranging to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \sqrt{\frac{2h}{g}} \][/tex]
Substitute the known values:
[tex]\[ t = \sqrt{\frac{2 \cdot 4.9 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]
[tex]\[ t = \sqrt{\frac{9.8 \, \text{m}}{9.8 \, \text{m/s}^2}} \][/tex]
[tex]\[ t = \sqrt{1} \][/tex]
[tex]\[ t = 1 \, \text{s} \][/tex]
So, it takes [tex]\( 1 \)[/tex] second for the stone to fall 4.9 meters.
### Part (b):
Next, we want to find the velocity of the stone at the end of the fall. The velocity of an object falling from rest under gravity can be found using:
[tex]\[ v = g t \][/tex]
where:
- [tex]\( v \)[/tex] is the velocity,
- [tex]\( g \)[/tex] is the acceleration due to gravity (9.8 m/s²),
- [tex]\( t \)[/tex] is the time in seconds (from part a, [tex]\( t = 1 \)[/tex] second).
Substitute the known values:
[tex]\[ v = 9.8 \, \text{m/s}^2 \cdot 1 \, \text{s} \][/tex]
[tex]\[ v = 9.8 \, \text{m/s} \][/tex]
So, the stone moves at [tex]\( 9.8 \, \text{m/s} \)[/tex] at the end of the fall.
### Part (c):
Finally, to determine the acceleration of the stone after 3 seconds, we recognize that the only force acting on the stone is gravity (assuming no air resistance). The acceleration due to gravity is constant.
Thus, the acceleration [tex]\( a \)[/tex] after any amount of time, including 3 seconds, remains:
[tex]\[ a = 9.8 \, \text{m/s}^2 \][/tex]
So, the acceleration of the stone after 3 seconds is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex].
### Summary:
(a) The time to fall 4.9 meters: [tex]\( 1 \)[/tex] second
(b) The velocity at the end of that fall: [tex]\( 9.8 \, \text{m/s} \)[/tex]
(c) The acceleration after 3 seconds: [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.