Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To calculate the enthalpy change ([tex]\(\Delta H_{rxn}\)[/tex]) for the given reaction:
[tex]\[ \text{CH}_3\text{Cl} + O_2 \rightarrow CO + \text{HCl} + \text{H}_2\text{O} \][/tex]
we will use Hess's Law, which states that the total enthalpy change for a given reaction is the sum of the enthalpy changes of the intermediate steps that lead to that overall reaction.
We will use the following given thermochemical equations and their enthalpy changes ([tex]\(\Delta H\)[/tex]):
1. [tex]\(2 \text{H}_2 + O_2 \rightarrow 2 \text{H}_2\text{O}, \quad \Delta H_1 = -571 \text{ kJ}\)[/tex]
2. [tex]\(\text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{OH}, \quad \Delta H_2 = -139 \text{ kJ}\)[/tex]
3. [tex]\(\text{CH}_3\text{OH} + \text{HCl} \rightarrow \text{CH}_3\text{Cl} + \text{H}_2\text{O}, \quad \Delta H_3 = -28 \text{ kJ}\)[/tex]
First, we will reverse reaction 3, since we need [tex]\(\text{CH}_3\text{Cl}\)[/tex] as a reactant and not as a product. Reversing the reaction also reverses the sign of [tex]\(\Delta H_3\)[/tex].
[tex]\[ \text{CH}_3\text{Cl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{OH} + \text{HCl}, \quad \Delta H = +28 \text{ kJ} \][/tex]
Now, we add this reversed [tex]\( \Delta H \)[/tex] value to the [tex]\(\Delta H\)[/tex] values of reactions 1 and 2:
[tex]\[ \begin{align*} 1. & \quad 2 \text{H}_2 + O_2 \rightarrow 2 \text{H}_2\text{O}, \quad \Delta H_1 = -571 \text{ kJ} \\ 2. & \quad \text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{OH}, \quad \Delta H_2 = -139 \text{ kJ} \\ 3. & \quad \text{CH}_3\text{Cl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{OH} + \text{HCl}, \quad \Delta H = +28 \text{ kJ} \\ \end{align*} \][/tex]
Summing these up:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_1 + \Delta H_2 + \Delta H\text{ (reversed 3)} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -571 \text{ kJ} + (-139 \text{ kJ}) + (28 \text{ kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -571 - 139 + 28 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -682 \text{ kJ} \][/tex]
Therefore, the enthalpy change ([tex]\(\Delta H_{\text{r\times n}}\)[/tex]) for the given reaction is:
[tex]\[ \boxed{-682 \text{ kJ}} \][/tex]
[tex]\[ \text{CH}_3\text{Cl} + O_2 \rightarrow CO + \text{HCl} + \text{H}_2\text{O} \][/tex]
we will use Hess's Law, which states that the total enthalpy change for a given reaction is the sum of the enthalpy changes of the intermediate steps that lead to that overall reaction.
We will use the following given thermochemical equations and their enthalpy changes ([tex]\(\Delta H\)[/tex]):
1. [tex]\(2 \text{H}_2 + O_2 \rightarrow 2 \text{H}_2\text{O}, \quad \Delta H_1 = -571 \text{ kJ}\)[/tex]
2. [tex]\(\text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{OH}, \quad \Delta H_2 = -139 \text{ kJ}\)[/tex]
3. [tex]\(\text{CH}_3\text{OH} + \text{HCl} \rightarrow \text{CH}_3\text{Cl} + \text{H}_2\text{O}, \quad \Delta H_3 = -28 \text{ kJ}\)[/tex]
First, we will reverse reaction 3, since we need [tex]\(\text{CH}_3\text{Cl}\)[/tex] as a reactant and not as a product. Reversing the reaction also reverses the sign of [tex]\(\Delta H_3\)[/tex].
[tex]\[ \text{CH}_3\text{Cl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{OH} + \text{HCl}, \quad \Delta H = +28 \text{ kJ} \][/tex]
Now, we add this reversed [tex]\( \Delta H \)[/tex] value to the [tex]\(\Delta H\)[/tex] values of reactions 1 and 2:
[tex]\[ \begin{align*} 1. & \quad 2 \text{H}_2 + O_2 \rightarrow 2 \text{H}_2\text{O}, \quad \Delta H_1 = -571 \text{ kJ} \\ 2. & \quad \text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_3\text{OH}, \quad \Delta H_2 = -139 \text{ kJ} \\ 3. & \quad \text{CH}_3\text{Cl} + \text{H}_2\text{O} \rightarrow \text{CH}_3\text{OH} + \text{HCl}, \quad \Delta H = +28 \text{ kJ} \\ \end{align*} \][/tex]
Summing these up:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_1 + \Delta H_2 + \Delta H\text{ (reversed 3)} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -571 \text{ kJ} + (-139 \text{ kJ}) + (28 \text{ kJ}) \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -571 - 139 + 28 \text{ kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = -682 \text{ kJ} \][/tex]
Therefore, the enthalpy change ([tex]\(\Delta H_{\text{r\times n}}\)[/tex]) for the given reaction is:
[tex]\[ \boxed{-682 \text{ kJ}} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.