At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Absolutely! Let's go through the step-by-step solution to determine the lengths of the legs of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, given its hypotenuse is [tex]\(10\sqrt{5}\)[/tex] inches.
### Step 1: Understand the Properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] Triangle
A [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is an isosceles right triangle, which means both of its legs are equal in length. Also, the relationship between the lengths of the legs [tex]\(a\)[/tex] and the hypotenuse [tex]\(c\)[/tex] is:
[tex]\[ c = a\sqrt{2} \][/tex]
In other words, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as each leg.
### Step 2: Set Up the Relationship
Given that the hypotenuse [tex]\(c = 10\sqrt{5}\)[/tex] inches, we use the relationship:
[tex]\[ 10\sqrt{5} = a\sqrt{2} \][/tex]
### Step 3: Solve for [tex]\(a\)[/tex]
To find the leg length [tex]\(a\)[/tex], we need to isolate [tex]\(a\)[/tex] in the equation.
[tex]\[ a = \frac{10\sqrt{5}}{\sqrt{2}} \][/tex]
### Step 4: Simplify the Expression
Now, simplify the fraction:
[tex]\[ a = \frac{10\sqrt{5}}{\sqrt{2}} \][/tex]
The fraction can be rationalized, but we can directly calculate by recognizing that:
[tex]\[ \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}} \][/tex]
Thus,
[tex]\[ a = 10 \times \sqrt{\frac{5}{2}} \][/tex]
From here, the numerical calculations provide the solution as given in the results:
[tex]\[ a \approx 15.811388300841896 \][/tex]
### Final Results
Therefore, the lengths of the legs of the triangle are approximately [tex]\(15.811388300841896\)[/tex] inches each.
In summary, the hypotenuse is [tex]\(22.360679774997898\)[/tex] inches, and each leg is approximately [tex]\(15.811388300841896\)[/tex] inches.
### Step 1: Understand the Properties of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] Triangle
A [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is an isosceles right triangle, which means both of its legs are equal in length. Also, the relationship between the lengths of the legs [tex]\(a\)[/tex] and the hypotenuse [tex]\(c\)[/tex] is:
[tex]\[ c = a\sqrt{2} \][/tex]
In other words, the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times as long as each leg.
### Step 2: Set Up the Relationship
Given that the hypotenuse [tex]\(c = 10\sqrt{5}\)[/tex] inches, we use the relationship:
[tex]\[ 10\sqrt{5} = a\sqrt{2} \][/tex]
### Step 3: Solve for [tex]\(a\)[/tex]
To find the leg length [tex]\(a\)[/tex], we need to isolate [tex]\(a\)[/tex] in the equation.
[tex]\[ a = \frac{10\sqrt{5}}{\sqrt{2}} \][/tex]
### Step 4: Simplify the Expression
Now, simplify the fraction:
[tex]\[ a = \frac{10\sqrt{5}}{\sqrt{2}} \][/tex]
The fraction can be rationalized, but we can directly calculate by recognizing that:
[tex]\[ \frac{\sqrt{5}}{\sqrt{2}} = \sqrt{\frac{5}{2}} \][/tex]
Thus,
[tex]\[ a = 10 \times \sqrt{\frac{5}{2}} \][/tex]
From here, the numerical calculations provide the solution as given in the results:
[tex]\[ a \approx 15.811388300841896 \][/tex]
### Final Results
Therefore, the lengths of the legs of the triangle are approximately [tex]\(15.811388300841896\)[/tex] inches each.
In summary, the hypotenuse is [tex]\(22.360679774997898\)[/tex] inches, and each leg is approximately [tex]\(15.811388300841896\)[/tex] inches.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.