madey21
Answered

Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

How should Reaction 1 be manipulated to connect with the goal reaction?

[tex]\[ \text{Rxn 1:} \quad N_2H_4 (l) + O_2 (g) \rightarrow N_2 (g) + 2 H_2O (g) \][/tex]
[tex]\[ \Delta H^{\circ} = -543.0 \frac{kJ}{mol} \][/tex]

[tex]\[ \text{Rxn 2:} \quad 2 H_2 (g) + O_2 (g) \rightarrow 2 H_2O (g) \][/tex]
[tex]\[ \Delta H^{\circ} = -484.0 \frac{kJ}{mol} \][/tex]

[tex]\[ \text{Rxn 3:} \quad N_2 (g) + 3 H_2 (g) \rightarrow 2 NH_3 (g) \][/tex]
[tex]\[ \Delta H^{\circ} = -92.2 \frac{kJ}{mol} \][/tex]

Goal: [tex]\( N_2H_4 (l) + H_2 (g) \rightarrow 2 NH_3 (g) \)[/tex]

A. Reaction 1 stays the same
B. Reaction 2 reverse the reaction
C. Reaction 3 double the reaction
D. Reaction 4 half the reaction


Sagot :

To solve for the goal reaction [tex]\( \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \)[/tex], we need to manipulate the given reactions and combine them appropriately. Let's go through the steps in detail:

Step 1: Use Reaction 1 as is
[tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g) \][/tex]
[tex]\[ \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]

Step 2: Reverse Reaction 2
[tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g) \][/tex]
[tex]\[ \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]

Step 3: Double Reaction 3
[tex]\[ 2(\text{N}_2(g) + 3\text{H}_2(g) \rightarrow 2\text{NH}_3(g)) \][/tex]
[tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = 2 \times (-92.2) = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]

Combining the reactions:

Now, let's add up these reactions:

1. [tex]\[ \text{N}_2\text{H}_4(l) + \text{O}_2(g) \rightarrow \text{N}_2(g) + 2\text{H}_2\text{O}(g), \Delta H^\circ = -543.0 \frac{\text{kJ}}{\text{mol}} \][/tex]

2. [tex]\[ 2\text{H}_2\text{O}(g) \rightarrow 2\text{H}_2(g) + \text{O}_2(g), \Delta H^\circ = +484.0 \frac{\text{kJ}}{\text{mol}} \][/tex]

3. [tex]\[ 2\text{N}_2(g) + 6\text{H}_2(g) \rightarrow 4\text{NH}_3(g), \Delta H^\circ = -184.4 \frac{\text{kJ}}{\text{mol}} \][/tex]

We can see that:
- The [tex]\(\text{O}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from the reversed Reaction 2.
- The [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from Reaction 1 cancels with [tex]\(2\text{H}_2\text{O}(g)\)[/tex] from the reversed Reaction 2.
- The [tex]\(\text{N}_2(g)\)[/tex] cancels out because 1 mole from Reaction 1 and 1 mole from doubled Reaction 3.

This leaves us with the desired reaction:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]

By adding up the enthalpy changes:
[tex]\[ \Delta H^\circ = -543.0 + 484.0 - 184.4 = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]

So the combined reaction and the enthalpy change are:
[tex]\[ \text{N}_2\text{H}_4(l) + \text{H}_2(g) \rightarrow 2\text{NH}_3(g) \][/tex]
[tex]\[ \Delta H^\circ = -243.4 \frac{\text{kJ}}{\text{mol}} \][/tex]