Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of finding the total heat capacity of the calorimeter, let's go through the step-by-step calculations:
1. Understanding the Given Information:
- The benzoic acid sample released [tex]\( 31.66 \, \text{kJ} \)[/tex] of energy.
- The calorimeter absorbed the same amount of energy, [tex]\( 31.66 \, \text{kJ} \)[/tex].
- The initial temperature of the calorimeter was [tex]\( 22.45^\circ \text{C} \)[/tex].
- The final temperature of the calorimeter was [tex]\( 26.10^\circ \text{C} \)[/tex].
2. Finding the Temperature Change ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T\)[/tex] is the change in temperature of the calorimeter.
- [tex]\(\Delta T = \text{final temperature} - \text{initial temperature} = 26.10^\circ \text{C} - 22.45^\circ \text{C}\)[/tex].
3. Calculate the Temperature Change:
[tex]\[ \Delta T = 26.10^\circ \text{C} - 22.45^\circ \text{C} = 3.65^\circ \text{C} \][/tex]
4. Using the Heat Capacity Formula:
- The formula for the total heat capacity ([tex]\(C_{\text{cal}}\)[/tex]) of the calorimeter is:
[tex]\[ C_{\text{cal}} = \frac{\text{Energy released}}{\Delta T} \][/tex]
- Substituting the values we have:
[tex]\[ C_{\text{cal}} = \frac{31.66 \, \text{kJ}}{3.65^\circ \text{C}} \][/tex]
5. Calculating the Total Heat Capacity:
[tex]\[ C_{\text{cal}} = \frac{31.66 \, \text{kJ}}{3.65^\circ \text{C}} \approx 8.674 \, \text{kJ} / ^\circ \text{C} \][/tex]
6. Final Answer:
The total heat capacity of the calorimeter is approximately [tex]\( 8.674 \, \text{kJ} / ^\circ \text{C} \)[/tex].
So, in conclusion, the total heat capacity of the calorimeter, based on the given information and calculations, is [tex]\( 8.674 \, \text{kJ} / ^\circ \text{C} \)[/tex].
1. Understanding the Given Information:
- The benzoic acid sample released [tex]\( 31.66 \, \text{kJ} \)[/tex] of energy.
- The calorimeter absorbed the same amount of energy, [tex]\( 31.66 \, \text{kJ} \)[/tex].
- The initial temperature of the calorimeter was [tex]\( 22.45^\circ \text{C} \)[/tex].
- The final temperature of the calorimeter was [tex]\( 26.10^\circ \text{C} \)[/tex].
2. Finding the Temperature Change ([tex]\(\Delta T\)[/tex]):
- [tex]\(\Delta T\)[/tex] is the change in temperature of the calorimeter.
- [tex]\(\Delta T = \text{final temperature} - \text{initial temperature} = 26.10^\circ \text{C} - 22.45^\circ \text{C}\)[/tex].
3. Calculate the Temperature Change:
[tex]\[ \Delta T = 26.10^\circ \text{C} - 22.45^\circ \text{C} = 3.65^\circ \text{C} \][/tex]
4. Using the Heat Capacity Formula:
- The formula for the total heat capacity ([tex]\(C_{\text{cal}}\)[/tex]) of the calorimeter is:
[tex]\[ C_{\text{cal}} = \frac{\text{Energy released}}{\Delta T} \][/tex]
- Substituting the values we have:
[tex]\[ C_{\text{cal}} = \frac{31.66 \, \text{kJ}}{3.65^\circ \text{C}} \][/tex]
5. Calculating the Total Heat Capacity:
[tex]\[ C_{\text{cal}} = \frac{31.66 \, \text{kJ}}{3.65^\circ \text{C}} \approx 8.674 \, \text{kJ} / ^\circ \text{C} \][/tex]
6. Final Answer:
The total heat capacity of the calorimeter is approximately [tex]\( 8.674 \, \text{kJ} / ^\circ \text{C} \)[/tex].
So, in conclusion, the total heat capacity of the calorimeter, based on the given information and calculations, is [tex]\( 8.674 \, \text{kJ} / ^\circ \text{C} \)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.