Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the heat of the reaction for the dissociation of [tex]\( KNO_3 \)[/tex] in water in a coffee cup calorimeter, we need to follow several steps involving the specific heat capacities of the solution and the calorimeter, as well as the temperature change.
### Step-by-Step Solution:
1. Given Data:
- Mass of [tex]\( KNO_3 \)[/tex]: [tex]\( 7.5 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 49.0 \, \text{g} \)[/tex]
- Initial temperature: [tex]\( 20.4^\circ \mathrm{C} \)[/tex]
- Final temperature: [tex]\( 9.7^\circ \mathrm{C} \)[/tex]
- Specific heat capacity of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \mathrm{C} \)[/tex]
- Heat capacity of the calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 6.5 \, \text{J/}^\circ \mathrm{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = \text{Final Temperature} - \text{Initial Temperature} = 9.7^\circ \mathrm{C} - 20.4^\circ \mathrm{C} = -10.7^\circ \mathrm{C} \][/tex]
3. Calculate the heat absorbed by the solution ([tex]\( q_{\text{soln}} \)[/tex]):
The total mass of the solution is the sum of the mass of [tex]\( KNO_3 \)[/tex] and the mass of water:
[tex]\[ \text{Total mass of solution} = 7.5 \, \text{g} + 49.0 \, \text{g} = 56.5 \, \text{g} \][/tex]
Using the specific heat capacity of the solution and the change in temperature:
[tex]\[ q_{\text{soln}} = \text{Total mass of solution} \times C_{\text{soln}} \times \Delta T \][/tex]
[tex]\[ q_{\text{soln}} = 56.5 \, \text{g} \times 4.18 \, \text{J/g}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -2527.019 \, \text{J} \][/tex]
4. Calculate the heat absorbed by the calorimeter ([tex]\( q_{\text{cal}} \)[/tex]):
[tex]\[ q_{\text{cal}} = C_{\text{cal}} \times \Delta T \][/tex]
[tex]\[ q_{\text{cal}} = 6.5 \, \text{J/}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -69.55 \, \text{J} \][/tex]
5. Calculate the total heat of reaction ([tex]\( q_{\text{rxn}} \)[/tex]):
The heat of the reaction is the negative sum of the heat absorbed by the solution and the calorimeter. Since the temperature decreased, the system released heat, so [tex]\( q_{\text{rxn}} \)[/tex] should be positive:
[tex]\[ q_{\text{rxn}} = -(q_{\text{soln}} + q_{\text{cal}}) \][/tex]
[tex]\[ q_{\text{rxn}} = -(-2527.019 \, \text{J} - 69.55 \, \text{J}) = 2596.569 \, \text{J} \][/tex]
### Conclusion:
The heat of the reaction, [tex]\( q_{\text{rxn}} \)[/tex], is [tex]\( +2596.569 \, \text{J} \)[/tex].
### Step-by-Step Solution:
1. Given Data:
- Mass of [tex]\( KNO_3 \)[/tex]: [tex]\( 7.5 \, \text{g} \)[/tex]
- Mass of water: [tex]\( 49.0 \, \text{g} \)[/tex]
- Initial temperature: [tex]\( 20.4^\circ \mathrm{C} \)[/tex]
- Final temperature: [tex]\( 9.7^\circ \mathrm{C} \)[/tex]
- Specific heat capacity of solution ([tex]\( C_{\text{soln}} \)[/tex]): [tex]\( 4.18 \, \text{J/g}^\circ \mathrm{C} \)[/tex]
- Heat capacity of the calorimeter ([tex]\( C_{\text{cal}} \)[/tex]): [tex]\( 6.5 \, \text{J/}^\circ \mathrm{C} \)[/tex]
2. Calculate the change in temperature ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = \text{Final Temperature} - \text{Initial Temperature} = 9.7^\circ \mathrm{C} - 20.4^\circ \mathrm{C} = -10.7^\circ \mathrm{C} \][/tex]
3. Calculate the heat absorbed by the solution ([tex]\( q_{\text{soln}} \)[/tex]):
The total mass of the solution is the sum of the mass of [tex]\( KNO_3 \)[/tex] and the mass of water:
[tex]\[ \text{Total mass of solution} = 7.5 \, \text{g} + 49.0 \, \text{g} = 56.5 \, \text{g} \][/tex]
Using the specific heat capacity of the solution and the change in temperature:
[tex]\[ q_{\text{soln}} = \text{Total mass of solution} \times C_{\text{soln}} \times \Delta T \][/tex]
[tex]\[ q_{\text{soln}} = 56.5 \, \text{g} \times 4.18 \, \text{J/g}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -2527.019 \, \text{J} \][/tex]
4. Calculate the heat absorbed by the calorimeter ([tex]\( q_{\text{cal}} \)[/tex]):
[tex]\[ q_{\text{cal}} = C_{\text{cal}} \times \Delta T \][/tex]
[tex]\[ q_{\text{cal}} = 6.5 \, \text{J/}^\circ \mathrm{C} \times (-10.7^\circ \mathrm{C}) = -69.55 \, \text{J} \][/tex]
5. Calculate the total heat of reaction ([tex]\( q_{\text{rxn}} \)[/tex]):
The heat of the reaction is the negative sum of the heat absorbed by the solution and the calorimeter. Since the temperature decreased, the system released heat, so [tex]\( q_{\text{rxn}} \)[/tex] should be positive:
[tex]\[ q_{\text{rxn}} = -(q_{\text{soln}} + q_{\text{cal}}) \][/tex]
[tex]\[ q_{\text{rxn}} = -(-2527.019 \, \text{J} - 69.55 \, \text{J}) = 2596.569 \, \text{J} \][/tex]
### Conclusion:
The heat of the reaction, [tex]\( q_{\text{rxn}} \)[/tex], is [tex]\( +2596.569 \, \text{J} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.