Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how much money Allison should invest now to have [tex]$8,000 saved in 4 years at an annual interest rate of 2.75% compounded quarterly, we can use the compound interest formula, which calculates the present value (the amount that should be invested now). Here's a detailed step-by-step solution:
1. Identify the variables:
- Future Value (FV): The amount Allison wants in the future, which is $[/tex]8,000.
- Annual Interest Rate (r): The rate at which the investment will grow annually, which is 2.75%.
- Number of Years (t): The time period over which the investment will grow, which is 4 years.
- Number of Times Compounded per Year (n): Since the interest is compounded quarterly, it is 4 times per year.
2. Convert the annual interest rate to the quarterly interest rate:
- Quarterly Interest Rate (r/n): This is achieved by dividing the annual interest rate by the number of times interest is compounded per year.
[tex]\[ \text{Quarterly Interest Rate} = \frac{2.75\%}{4} = \frac{0.0275}{4} = 0.006875 \][/tex]
3. Calculate the total number of times the interest is compounded over the whole period:
- Total number of compounding periods (nt): This is the number of years multiplied by the number of compounding periods per year.
[tex]\[ \text{Total Compounding Periods} = 4 \text{ years} \times 4 \text{ periods per year} = 16 \text{ periods} \][/tex]
4. Use the compound interest formula to find the present value (PV):
The compound interest formula is:
[tex]\[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \][/tex]
Where:
- [tex]\( FV \)[/tex] is the future value,
- [tex]\( r \)[/tex] is the annual interest rate,
- [tex]\( n \)[/tex] is the number of times interest is compounded per year,
- [tex]\( t \)[/tex] is the number of years.
Plugging in the values:
[tex]\[ PV = \frac{8000}{(1 + 0.006875)^{16}} \][/tex]
5. Calculate the term inside the parentheses and then apply the exponentiation:
[tex]\[ 1 + 0.006875 = 1.006875 \][/tex]
[tex]\[ (1.006875)^{16} = \text{(compute using a calculator or mathematical software)} \][/tex]
6. Divide the future value by the calculated term:
[tex]\[ PV = \frac{8000}{\text{Value computed in previous step}} \][/tex]
7. The final present value:
Upon calculating the above, we find:
[tex]\[ PV \approx 7169.37 \][/tex]
Thus, Allison should invest approximately [tex]$7,169.37 now to have $[/tex]8,000 saved in 4 years with a 2.75% annual interest rate compounded quarterly.
- Annual Interest Rate (r): The rate at which the investment will grow annually, which is 2.75%.
- Number of Years (t): The time period over which the investment will grow, which is 4 years.
- Number of Times Compounded per Year (n): Since the interest is compounded quarterly, it is 4 times per year.
2. Convert the annual interest rate to the quarterly interest rate:
- Quarterly Interest Rate (r/n): This is achieved by dividing the annual interest rate by the number of times interest is compounded per year.
[tex]\[ \text{Quarterly Interest Rate} = \frac{2.75\%}{4} = \frac{0.0275}{4} = 0.006875 \][/tex]
3. Calculate the total number of times the interest is compounded over the whole period:
- Total number of compounding periods (nt): This is the number of years multiplied by the number of compounding periods per year.
[tex]\[ \text{Total Compounding Periods} = 4 \text{ years} \times 4 \text{ periods per year} = 16 \text{ periods} \][/tex]
4. Use the compound interest formula to find the present value (PV):
The compound interest formula is:
[tex]\[ PV = \frac{FV}{(1 + \frac{r}{n})^{nt}} \][/tex]
Where:
- [tex]\( FV \)[/tex] is the future value,
- [tex]\( r \)[/tex] is the annual interest rate,
- [tex]\( n \)[/tex] is the number of times interest is compounded per year,
- [tex]\( t \)[/tex] is the number of years.
Plugging in the values:
[tex]\[ PV = \frac{8000}{(1 + 0.006875)^{16}} \][/tex]
5. Calculate the term inside the parentheses and then apply the exponentiation:
[tex]\[ 1 + 0.006875 = 1.006875 \][/tex]
[tex]\[ (1.006875)^{16} = \text{(compute using a calculator or mathematical software)} \][/tex]
6. Divide the future value by the calculated term:
[tex]\[ PV = \frac{8000}{\text{Value computed in previous step}} \][/tex]
7. The final present value:
Upon calculating the above, we find:
[tex]\[ PV \approx 7169.37 \][/tex]
Thus, Allison should invest approximately [tex]$7,169.37 now to have $[/tex]8,000 saved in 4 years with a 2.75% annual interest rate compounded quarterly.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.