Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the number of molecules of menthol ([tex]\(C_{10}H_{20}O\)[/tex]) in a sample that has [tex]\(2.25 \times 10^{-6}\)[/tex] moles of hydrogen ([tex]\(H\)[/tex]), we can follow these steps:
1. Determine the moles of menthol:
- Menthol ([tex]\(C_{10}H_{20}O\)[/tex]) has 20 hydrogen atoms for every molecule of menthol.
- Thus, to find the moles of menthol, we divide the moles of hydrogen by the number of hydrogen atoms in one molecule of menthol.
[tex]\[ \text{Moles of menthol} = \frac{2.25 \times 10^{-6} \, \text{moles of H}}{20} \][/tex]
- This simplifies to:
[tex]\[ \text{Moles of menthol} = 1.125 \times 10^{-7} \, \text{moles} \][/tex]
2. Calculate the number of molecules of menthol:
- Using Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex], we convert moles of menthol to molecules.
[tex]\[ \text{Number of molecules} = 1.125 \times 10^{-7} \, \text{moles} \times 6.022 \times 10^{23} \, \text{molecules/mole} \][/tex]
- This gives:
[tex]\[ \text{Number of molecules} = 6.77475 \times 10^{16} \][/tex]
3. Express the result in the form [tex]\( \text{coefficient} \times 10^{\text{exponent}} \)[/tex]:
- The number of molecules of menthol can be expressed as:
[tex]\[ \boxed{6.774750000000001 \times 10^{16}} \][/tex]
Thus, the number of molecules of menthol ([tex]\(C_{10}H_{20}O\)[/tex]) in the sample is approximately [tex]\(6.77475 \times 10^{16}\)[/tex] molecules.
1. Determine the moles of menthol:
- Menthol ([tex]\(C_{10}H_{20}O\)[/tex]) has 20 hydrogen atoms for every molecule of menthol.
- Thus, to find the moles of menthol, we divide the moles of hydrogen by the number of hydrogen atoms in one molecule of menthol.
[tex]\[ \text{Moles of menthol} = \frac{2.25 \times 10^{-6} \, \text{moles of H}}{20} \][/tex]
- This simplifies to:
[tex]\[ \text{Moles of menthol} = 1.125 \times 10^{-7} \, \text{moles} \][/tex]
2. Calculate the number of molecules of menthol:
- Using Avogadro's number, [tex]\(6.022 \times 10^{23}\)[/tex], we convert moles of menthol to molecules.
[tex]\[ \text{Number of molecules} = 1.125 \times 10^{-7} \, \text{moles} \times 6.022 \times 10^{23} \, \text{molecules/mole} \][/tex]
- This gives:
[tex]\[ \text{Number of molecules} = 6.77475 \times 10^{16} \][/tex]
3. Express the result in the form [tex]\( \text{coefficient} \times 10^{\text{exponent}} \)[/tex]:
- The number of molecules of menthol can be expressed as:
[tex]\[ \boxed{6.774750000000001 \times 10^{16}} \][/tex]
Thus, the number of molecules of menthol ([tex]\(C_{10}H_{20}O\)[/tex]) in the sample is approximately [tex]\(6.77475 \times 10^{16}\)[/tex] molecules.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.