Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Sure! Let's address each question step-by-step.
### Q2. Coefficient of [tex]\( x^2 \)[/tex] and leading term in the polynomial [tex]\( 5-7 x^2+7 x^3+\sqrt{11} x^5 \)[/tex]:
1. Identify the coefficient of [tex]\( x^2 \)[/tex]:
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], we look at each term.
- The term involving [tex]\( x^2 \)[/tex] is [tex]\( -7 x^2 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] is therefore [tex]\( -7 \)[/tex].
2. Determine the leading term:
- The leading term of a polynomial is the term with the highest degree (the highest power of [tex]\( x \)[/tex]).
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], the term with the highest degree is [tex]\( \sqrt{11} x^5 \)[/tex].
- Therefore, the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
Hence, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\( -7 \)[/tex] and the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
### Q3. Find the roots of the polynomial equation [tex]\( (x+3)(x+2)=0 \)[/tex]:
1. Setting the polynomial equal to zero:
- We start with the equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex].
2. Using the Zero Product Property:
- The Zero Product Property states that if the product of two factors is zero, then at least one of the factors must be zero.
- So, we can set each factor equal to zero: [tex]\( x + 3 = 0 \)[/tex] and [tex]\( x + 2 = 0 \)[/tex].
3. Solving for [tex]\( x \)[/tex] in each equation:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x + 2 = 0 \)[/tex]:
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
In summary:
- The coefficient of [tex]\( x^2 \)[/tex] in the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex] is [tex]\( -7 \)[/tex].
- The leading term in the polynomial is [tex]\( \sqrt{11} x^5 \)[/tex].
- The roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
### Q2. Coefficient of [tex]\( x^2 \)[/tex] and leading term in the polynomial [tex]\( 5-7 x^2+7 x^3+\sqrt{11} x^5 \)[/tex]:
1. Identify the coefficient of [tex]\( x^2 \)[/tex]:
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], we look at each term.
- The term involving [tex]\( x^2 \)[/tex] is [tex]\( -7 x^2 \)[/tex].
- The coefficient of [tex]\( x^2 \)[/tex] is therefore [tex]\( -7 \)[/tex].
2. Determine the leading term:
- The leading term of a polynomial is the term with the highest degree (the highest power of [tex]\( x \)[/tex]).
- In the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex], the term with the highest degree is [tex]\( \sqrt{11} x^5 \)[/tex].
- Therefore, the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
Hence, the coefficient of [tex]\( x^2 \)[/tex] is [tex]\( -7 \)[/tex] and the leading term is [tex]\( \sqrt{11} x^5 \)[/tex].
### Q3. Find the roots of the polynomial equation [tex]\( (x+3)(x+2)=0 \)[/tex]:
1. Setting the polynomial equal to zero:
- We start with the equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex].
2. Using the Zero Product Property:
- The Zero Product Property states that if the product of two factors is zero, then at least one of the factors must be zero.
- So, we can set each factor equal to zero: [tex]\( x + 3 = 0 \)[/tex] and [tex]\( x + 2 = 0 \)[/tex].
3. Solving for [tex]\( x \)[/tex] in each equation:
- For [tex]\( x + 3 = 0 \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
- For [tex]\( x + 2 = 0 \)[/tex]:
[tex]\[ x + 2 = 0 \implies x = -2 \][/tex]
Therefore, the roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
In summary:
- The coefficient of [tex]\( x^2 \)[/tex] in the polynomial [tex]\( 5 - 7 x^2 + 7 x^3 + \sqrt{11} x^5 \)[/tex] is [tex]\( -7 \)[/tex].
- The leading term in the polynomial is [tex]\( \sqrt{11} x^5 \)[/tex].
- The roots of the polynomial equation [tex]\( (x + 3)(x + 2) = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -2 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.