Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure! Let's break this problem down into steps:
### Given Data
- Initial velocity ([tex]\(v_0\)[/tex]): 150 m/s
- Angle ([tex]\(\theta\)[/tex]) with the horizontal: [tex]\(30^\circ\)[/tex]
- Height of the cliff ([tex]\(h_0\)[/tex]): 50 meters
- Acceleration due to gravity ([tex]\(g\)[/tex]): [tex]\(9.81 \, \text{m/s}^2\)[/tex]
### Conversion of Angle to Radians
First, let's convert the angle from degrees to radians since trigonometric functions in physics typically use radians.
[tex]\[ \theta_\text{rad} = \frac{30 \times \pi}{180} = \frac{\pi}{6} \][/tex]
### Decomposition of Initial Velocity
The initial velocity is split into two components:
- Horizontal component ([tex]\(v_{0x}\)[/tex]):
[tex]\[ v_{0x} = v_0 \cos(\theta_\text{rad}) = 150 \cos\left(\frac{\pi}{6}\right) = 150 \times \frac{\sqrt{3}}{2} \approx 129.9 \, \text{m/s} \][/tex]
- Vertical component ([tex]\(v_{0y}\)[/tex]):
[tex]\[ v_{0y} = v_0 \sin(\theta_\text{rad}) = 150 \sin\left(\frac{\pi}{6}\right) = 150 \times \frac{1}{2} = 75 \, \text{m/s} \][/tex]
### Part (a): Time of Flight to the Ground
To find the time ([tex]\(t\)[/tex]) at which the projectile hits the ground, we use the vertical motion equation:
[tex]\[ h = h_0 + v_{0y} t - \frac{1}{2} g t^2 \][/tex]
Given that the final height [tex]\(h = 0\)[/tex] (ground level), we rewrite it as a quadratic equation:
[tex]\[ 0 = 50 + 75t - \frac{1}{2} \cdot 9.81 t^2 \][/tex]
This simplifies to:
[tex]\[ 4.905 t^2 - 75t - 50 = 0 \][/tex]
To solve this quadratic equation, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Where [tex]\(a = -4.905\)[/tex], [tex]\(b = 75\)[/tex], [tex]\(c = 50\)[/tex]:
[tex]\[ t = \frac{-75 \pm \sqrt{75^2 - 4(-4.905)(50)}}{2(-4.905)} \][/tex]
Calculating the discriminant:
[tex]\[ 75^2 - 4 \cdot (-4.905) \cdot 50 = 5625 + 981 = 6606 \][/tex]
Thus:
[tex]\[ t = \frac{-75 \pm \sqrt{6606}}{-9.81} \][/tex]
Solving for the two values:
[tex]\[ t_1 = \frac{-75 + 81.26}{-9.81} \approx -0.64 \, \text{s} \quad \text{(not meaningful as time cannot be negative)} \][/tex]
[tex]\[ t_2 = \frac{-75 - 81.26}{-9.81} \approx 15.93 \, \text{s} \][/tex]
The projectile takes approximately [tex]\(15.93\)[/tex] seconds to hit the ground.
### Horizontal Distance
To find the horizontal distance traveled ([tex]\(d\)[/tex]):
[tex]\[ d = v_{0x} \times t = 129.9 \, \text{m/s} \times 15.93 \, \text{s} \approx 2069.42 \, \text{m} \][/tex]
### Part (b): Greatest Elevation Above the Ground
The greatest elevation occurs at the peak of the trajectory.
The time to reach maximum height ([tex]\(t_\text{max}\)[/tex]) is when the vertical velocity component becomes zero:
[tex]\[ t_\text{max} = \frac{v_{0y}}{g} = \frac{75}{9.81} \approx 7.65 \, \text{s} \][/tex]
Max height ([tex]\(H\)[/tex]) above the cliff:
[tex]\[ H = h_0 + v_{0y} t_\text{max} - \frac{1}{2} g t_\text{max}^2 \][/tex]
[tex]\[ H = 50 + 75 \cdot 7.65 - \frac{1}{2} \cdot 9.81 \cdot 7.65^2 \][/tex]
[tex]\[ H = 50 + 573.75 - 286.05 \approx 336.7 \, \text{m} \][/tex]
Therefore, the greatest elevation above the ground is approximately [tex]\(336.7\)[/tex] meters.
### Given Data
- Initial velocity ([tex]\(v_0\)[/tex]): 150 m/s
- Angle ([tex]\(\theta\)[/tex]) with the horizontal: [tex]\(30^\circ\)[/tex]
- Height of the cliff ([tex]\(h_0\)[/tex]): 50 meters
- Acceleration due to gravity ([tex]\(g\)[/tex]): [tex]\(9.81 \, \text{m/s}^2\)[/tex]
### Conversion of Angle to Radians
First, let's convert the angle from degrees to radians since trigonometric functions in physics typically use radians.
[tex]\[ \theta_\text{rad} = \frac{30 \times \pi}{180} = \frac{\pi}{6} \][/tex]
### Decomposition of Initial Velocity
The initial velocity is split into two components:
- Horizontal component ([tex]\(v_{0x}\)[/tex]):
[tex]\[ v_{0x} = v_0 \cos(\theta_\text{rad}) = 150 \cos\left(\frac{\pi}{6}\right) = 150 \times \frac{\sqrt{3}}{2} \approx 129.9 \, \text{m/s} \][/tex]
- Vertical component ([tex]\(v_{0y}\)[/tex]):
[tex]\[ v_{0y} = v_0 \sin(\theta_\text{rad}) = 150 \sin\left(\frac{\pi}{6}\right) = 150 \times \frac{1}{2} = 75 \, \text{m/s} \][/tex]
### Part (a): Time of Flight to the Ground
To find the time ([tex]\(t\)[/tex]) at which the projectile hits the ground, we use the vertical motion equation:
[tex]\[ h = h_0 + v_{0y} t - \frac{1}{2} g t^2 \][/tex]
Given that the final height [tex]\(h = 0\)[/tex] (ground level), we rewrite it as a quadratic equation:
[tex]\[ 0 = 50 + 75t - \frac{1}{2} \cdot 9.81 t^2 \][/tex]
This simplifies to:
[tex]\[ 4.905 t^2 - 75t - 50 = 0 \][/tex]
To solve this quadratic equation, we use the quadratic formula:
[tex]\[ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Where [tex]\(a = -4.905\)[/tex], [tex]\(b = 75\)[/tex], [tex]\(c = 50\)[/tex]:
[tex]\[ t = \frac{-75 \pm \sqrt{75^2 - 4(-4.905)(50)}}{2(-4.905)} \][/tex]
Calculating the discriminant:
[tex]\[ 75^2 - 4 \cdot (-4.905) \cdot 50 = 5625 + 981 = 6606 \][/tex]
Thus:
[tex]\[ t = \frac{-75 \pm \sqrt{6606}}{-9.81} \][/tex]
Solving for the two values:
[tex]\[ t_1 = \frac{-75 + 81.26}{-9.81} \approx -0.64 \, \text{s} \quad \text{(not meaningful as time cannot be negative)} \][/tex]
[tex]\[ t_2 = \frac{-75 - 81.26}{-9.81} \approx 15.93 \, \text{s} \][/tex]
The projectile takes approximately [tex]\(15.93\)[/tex] seconds to hit the ground.
### Horizontal Distance
To find the horizontal distance traveled ([tex]\(d\)[/tex]):
[tex]\[ d = v_{0x} \times t = 129.9 \, \text{m/s} \times 15.93 \, \text{s} \approx 2069.42 \, \text{m} \][/tex]
### Part (b): Greatest Elevation Above the Ground
The greatest elevation occurs at the peak of the trajectory.
The time to reach maximum height ([tex]\(t_\text{max}\)[/tex]) is when the vertical velocity component becomes zero:
[tex]\[ t_\text{max} = \frac{v_{0y}}{g} = \frac{75}{9.81} \approx 7.65 \, \text{s} \][/tex]
Max height ([tex]\(H\)[/tex]) above the cliff:
[tex]\[ H = h_0 + v_{0y} t_\text{max} - \frac{1}{2} g t_\text{max}^2 \][/tex]
[tex]\[ H = 50 + 75 \cdot 7.65 - \frac{1}{2} \cdot 9.81 \cdot 7.65^2 \][/tex]
[tex]\[ H = 50 + 573.75 - 286.05 \approx 336.7 \, \text{m} \][/tex]
Therefore, the greatest elevation above the ground is approximately [tex]\(336.7\)[/tex] meters.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.