Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
d.(p ∧ ¬p) .
Step-by-step explanation:
A tautology in logic is a formula or assertion that is true in every possible interpretation. This means that the statement is always true, regardless of the truth values of its variables.
Let's evaluate each of the given statements:
a.) ¬(p ∧ q) → ¬(p ∨ q)
b.) (p ∧ ¬p) ↔ (q ∨ ¬q)
c.) (p ∧ ¬p) → ¬(q ∨ ¬q)
d.) (p ↔ ¬p) ∧ (q ∨ ¬q)
Evaluation
a.) ¬(p ∧ q) → ¬(p ∨ q)
This is not a tautology. There are cases where this statement can be false. For example, if p is true and q is false, then ¬(p ∧ q) is true, but ¬(p ∨ q) is false.
b.) (p ∧ ¬p) ↔ (q ∨ ¬q)
This is a tautology. The left side (p ∧ ¬p) is a contradiction and is always false. The right side (q ∨ ¬q) is a tautology and is always true. A false statement is equivalent to a true statement in logic, so this entire statement is always true.
c.) (p ∧ ¬p) → ¬(q ∨ ¬q)
This is not a tautology. The left side (p ∧ ¬p) is a contradiction and is always false. The right side ¬(q ∨ ¬q) is a contradiction and is always false. A false statement implies a false statement is not always true.
d.) (p ↔ ¬p) ∧ (q ∨ ¬q)
This is not a tautology. The left side (p ↔ ¬p) is a contradiction and is always false. The right side (q ∨ ¬q) is a tautology and is always true. A false statement and a true statement is not always true.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.