Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To convert the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] to a fraction, follow these steps:
1. Identify the repeating part: Note that the repeating sequence is [tex]\( 142857 \)[/tex], which has 6 digits.
2. Set up an equation: Let [tex]\( z = 0.142857142857\ldots \)[/tex].
3. Eliminate the repeating part: Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] (because the repeating part has 6 digits):
[tex]\[ 10^6z = 142857.142857142857\ldots \][/tex]
4. Subtract the original equation from this new equation to eliminate the repeating decimals:
[tex]\[ 10^6z - z = 142857.142857142857\ldots - 0.142857142857\ldots \][/tex]
Simplifying this gives:
[tex]\[ 999999z = 142857 \][/tex]
5. Solve for [tex]\( z \)[/tex] by dividing both sides of the equation by [tex]\( 999999 \)[/tex]:
[tex]\[ z = \frac{142857}{999999} \][/tex]
6. Simplify the fraction: To simplify [tex]\( \frac{142857}{999999} \)[/tex], we find the greatest common divisor (GCD) of 142857 and 999999. It turns out that the GCD is 142857.
Dividing both the numerator and the denominator by 142857, we get:
[tex]\[ \frac{142857 \div 142857}{999999 \div 142857} = \frac{1}{7} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{1}{7} \][/tex]
1. Identify the repeating part: Note that the repeating sequence is [tex]\( 142857 \)[/tex], which has 6 digits.
2. Set up an equation: Let [tex]\( z = 0.142857142857\ldots \)[/tex].
3. Eliminate the repeating part: Multiply both sides of the equation by [tex]\( 10^6 \)[/tex] (because the repeating part has 6 digits):
[tex]\[ 10^6z = 142857.142857142857\ldots \][/tex]
4. Subtract the original equation from this new equation to eliminate the repeating decimals:
[tex]\[ 10^6z - z = 142857.142857142857\ldots - 0.142857142857\ldots \][/tex]
Simplifying this gives:
[tex]\[ 999999z = 142857 \][/tex]
5. Solve for [tex]\( z \)[/tex] by dividing both sides of the equation by [tex]\( 999999 \)[/tex]:
[tex]\[ z = \frac{142857}{999999} \][/tex]
6. Simplify the fraction: To simplify [tex]\( \frac{142857}{999999} \)[/tex], we find the greatest common divisor (GCD) of 142857 and 999999. It turns out that the GCD is 142857.
Dividing both the numerator and the denominator by 142857, we get:
[tex]\[ \frac{142857 \div 142857}{999999 \div 142857} = \frac{1}{7} \][/tex]
Therefore, the repeating decimal [tex]\( z = 0.142857142857\ldots \)[/tex] can be written as the simplified fraction:
[tex]\[ z = \frac{1}{7} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.