Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's analyze each statement individually to determine if it is true or false:
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.